png/common.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
//! Common types shared between the encoder and decoder
use crate::text_metadata::{EncodableTextChunk, ITXtChunk, TEXtChunk, ZTXtChunk};
use crate::{chunk, encoder};
use io::Write;
use std::{borrow::Cow, convert::TryFrom, fmt, io};
/// Describes how a pixel is encoded.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum ColorType {
/// 1 grayscale sample.
Grayscale = 0,
/// 1 red sample, 1 green sample, 1 blue sample.
Rgb = 2,
/// 1 sample for the palette index.
Indexed = 3,
/// 1 grayscale sample, then 1 alpha sample.
GrayscaleAlpha = 4,
/// 1 red sample, 1 green sample, 1 blue sample, and finally, 1 alpha sample.
Rgba = 6,
}
impl ColorType {
/// Returns the number of samples used per pixel encoded in this way.
pub fn samples(self) -> usize {
self.samples_u8().into()
}
pub(crate) fn samples_u8(self) -> u8 {
use self::ColorType::*;
match self {
Grayscale | Indexed => 1,
Rgb => 3,
GrayscaleAlpha => 2,
Rgba => 4,
}
}
/// u8 -> Self. Temporary solution until Rust provides a canonical one.
pub fn from_u8(n: u8) -> Option<ColorType> {
match n {
0 => Some(ColorType::Grayscale),
2 => Some(ColorType::Rgb),
3 => Some(ColorType::Indexed),
4 => Some(ColorType::GrayscaleAlpha),
6 => Some(ColorType::Rgba),
_ => None,
}
}
pub(crate) fn checked_raw_row_length(self, depth: BitDepth, width: u32) -> Option<usize> {
// No overflow can occur in 64 bits, we multiply 32-bit with 5 more bits.
let bits = u64::from(width) * u64::from(self.samples_u8()) * u64::from(depth.into_u8());
TryFrom::try_from(1 + (bits + 7) / 8).ok()
}
pub(crate) fn raw_row_length_from_width(self, depth: BitDepth, width: u32) -> usize {
let samples = width as usize * self.samples();
1 + match depth {
BitDepth::Sixteen => samples * 2,
BitDepth::Eight => samples,
subbyte => {
let samples_per_byte = 8 / subbyte as usize;
let whole = samples / samples_per_byte;
let fract = usize::from(samples % samples_per_byte > 0);
whole + fract
}
}
}
pub(crate) fn is_combination_invalid(self, bit_depth: BitDepth) -> bool {
// Section 11.2.2 of the PNG standard disallows several combinations
// of bit depth and color type
((bit_depth == BitDepth::One || bit_depth == BitDepth::Two || bit_depth == BitDepth::Four)
&& (self == ColorType::Rgb
|| self == ColorType::GrayscaleAlpha
|| self == ColorType::Rgba))
|| (bit_depth == BitDepth::Sixteen && self == ColorType::Indexed)
}
}
/// Bit depth of the PNG file.
/// Specifies the number of bits per sample.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum BitDepth {
One = 1,
Two = 2,
Four = 4,
Eight = 8,
Sixteen = 16,
}
/// Internal count of bytes per pixel.
/// This is used for filtering which never uses sub-byte units. This essentially reduces the number
/// of possible byte chunk lengths to a very small set of values appropriate to be defined as an
/// enum.
#[derive(Debug, Clone, Copy)]
#[repr(u8)]
pub(crate) enum BytesPerPixel {
One = 1,
Two = 2,
Three = 3,
Four = 4,
Six = 6,
Eight = 8,
}
impl BitDepth {
/// u8 -> Self. Temporary solution until Rust provides a canonical one.
pub fn from_u8(n: u8) -> Option<BitDepth> {
match n {
1 => Some(BitDepth::One),
2 => Some(BitDepth::Two),
4 => Some(BitDepth::Four),
8 => Some(BitDepth::Eight),
16 => Some(BitDepth::Sixteen),
_ => None,
}
}
pub(crate) fn into_u8(self) -> u8 {
self as u8
}
}
/// Pixel dimensions information
#[derive(Clone, Copy, Debug)]
pub struct PixelDimensions {
/// Pixels per unit, X axis
pub xppu: u32,
/// Pixels per unit, Y axis
pub yppu: u32,
/// Either *Meter* or *Unspecified*
pub unit: Unit,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
/// Physical unit of the pixel dimensions
pub enum Unit {
Unspecified = 0,
Meter = 1,
}
impl Unit {
/// u8 -> Self. Temporary solution until Rust provides a canonical one.
pub fn from_u8(n: u8) -> Option<Unit> {
match n {
0 => Some(Unit::Unspecified),
1 => Some(Unit::Meter),
_ => None,
}
}
}
/// How to reset buffer of an animated png (APNG) at the end of a frame.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum DisposeOp {
/// Leave the buffer unchanged.
None = 0,
/// Clear buffer with the background color.
Background = 1,
/// Reset the buffer to the state before the current frame.
Previous = 2,
}
impl DisposeOp {
/// u8 -> Self. Using enum_primitive or transmute is probably the right thing but this will do for now.
pub fn from_u8(n: u8) -> Option<DisposeOp> {
match n {
0 => Some(DisposeOp::None),
1 => Some(DisposeOp::Background),
2 => Some(DisposeOp::Previous),
_ => None,
}
}
}
impl fmt::Display for DisposeOp {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let name = match *self {
DisposeOp::None => "DISPOSE_OP_NONE",
DisposeOp::Background => "DISPOSE_OP_BACKGROUND",
DisposeOp::Previous => "DISPOSE_OP_PREVIOUS",
};
write!(f, "{}", name)
}
}
/// How pixels are written into the buffer.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum BlendOp {
/// Pixels overwrite the value at their position.
Source = 0,
/// The new pixels are blended into the current state based on alpha.
Over = 1,
}
impl BlendOp {
/// u8 -> Self. Using enum_primitive or transmute is probably the right thing but this will do for now.
pub fn from_u8(n: u8) -> Option<BlendOp> {
match n {
0 => Some(BlendOp::Source),
1 => Some(BlendOp::Over),
_ => None,
}
}
}
impl fmt::Display for BlendOp {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let name = match *self {
BlendOp::Source => "BLEND_OP_SOURCE",
BlendOp::Over => "BLEND_OP_OVER",
};
write!(f, "{}", name)
}
}
/// Frame control information
#[derive(Clone, Copy, Debug)]
pub struct FrameControl {
/// Sequence number of the animation chunk, starting from 0
pub sequence_number: u32,
/// Width of the following frame
pub width: u32,
/// Height of the following frame
pub height: u32,
/// X position at which to render the following frame
pub x_offset: u32,
/// Y position at which to render the following frame
pub y_offset: u32,
/// Frame delay fraction numerator
pub delay_num: u16,
/// Frame delay fraction denominator
pub delay_den: u16,
/// Type of frame area disposal to be done after rendering this frame
pub dispose_op: DisposeOp,
/// Type of frame area rendering for this frame
pub blend_op: BlendOp,
}
impl Default for FrameControl {
fn default() -> FrameControl {
FrameControl {
sequence_number: 0,
width: 0,
height: 0,
x_offset: 0,
y_offset: 0,
delay_num: 1,
delay_den: 30,
dispose_op: DisposeOp::None,
blend_op: BlendOp::Source,
}
}
}
impl FrameControl {
pub fn set_seq_num(&mut self, s: u32) {
self.sequence_number = s;
}
pub fn inc_seq_num(&mut self, i: u32) {
self.sequence_number += i;
}
pub fn encode<W: Write>(self, w: &mut W) -> encoder::Result<()> {
let mut data = [0u8; 26];
data[..4].copy_from_slice(&self.sequence_number.to_be_bytes());
data[4..8].copy_from_slice(&self.width.to_be_bytes());
data[8..12].copy_from_slice(&self.height.to_be_bytes());
data[12..16].copy_from_slice(&self.x_offset.to_be_bytes());
data[16..20].copy_from_slice(&self.y_offset.to_be_bytes());
data[20..22].copy_from_slice(&self.delay_num.to_be_bytes());
data[22..24].copy_from_slice(&self.delay_den.to_be_bytes());
data[24] = self.dispose_op as u8;
data[25] = self.blend_op as u8;
encoder::write_chunk(w, chunk::fcTL, &data)
}
}
/// Animation control information
#[derive(Clone, Copy, Debug)]
pub struct AnimationControl {
/// Number of frames
pub num_frames: u32,
/// Number of times to loop this APNG. 0 indicates infinite looping.
pub num_plays: u32,
}
impl AnimationControl {
pub fn encode<W: Write>(self, w: &mut W) -> encoder::Result<()> {
let mut data = [0; 8];
data[..4].copy_from_slice(&self.num_frames.to_be_bytes());
data[4..].copy_from_slice(&self.num_plays.to_be_bytes());
encoder::write_chunk(w, chunk::acTL, &data)
}
}
/// The type and strength of applied compression.
#[derive(Debug, Clone, Copy)]
pub enum Compression {
/// Default level
Default,
/// Fast minimal compression
Fast,
/// Higher compression level
///
/// Best in this context isn't actually the highest possible level
/// the encoder can do, but is meant to emulate the `Best` setting in the `Flate2`
/// library.
Best,
#[deprecated(
since = "0.17.6",
note = "use one of the other compression levels instead, such as 'fast'"
)]
Huffman,
#[deprecated(
since = "0.17.6",
note = "use one of the other compression levels instead, such as 'fast'"
)]
Rle,
}
impl Default for Compression {
fn default() -> Self {
Self::Default
}
}
/// An unsigned integer scaled version of a floating point value,
/// equivalent to an integer quotient with fixed denominator (100_000)).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ScaledFloat(u32);
impl ScaledFloat {
const SCALING: f32 = 100_000.0;
/// Gets whether the value is within the clamped range of this type.
pub fn in_range(value: f32) -> bool {
value >= 0.0 && (value * Self::SCALING).floor() <= u32::MAX as f32
}
/// Gets whether the value can be exactly converted in round-trip.
#[allow(clippy::float_cmp)] // Stupid tool, the exact float compare is _the entire point_.
pub fn exact(value: f32) -> bool {
let there = Self::forward(value);
let back = Self::reverse(there);
value == back
}
fn forward(value: f32) -> u32 {
(value.max(0.0) * Self::SCALING).floor() as u32
}
fn reverse(encoded: u32) -> f32 {
encoded as f32 / Self::SCALING
}
/// Slightly inaccurate scaling and quantization.
/// Clamps the value into the representable range if it is negative or too large.
pub fn new(value: f32) -> Self {
Self(Self::forward(value))
}
/// Fully accurate construction from a value scaled as per specification.
pub fn from_scaled(val: u32) -> Self {
Self(val)
}
/// Get the accurate encoded value.
pub fn into_scaled(self) -> u32 {
self.0
}
/// Get the unscaled value as a floating point.
pub fn into_value(self) -> f32 {
Self::reverse(self.0)
}
pub(crate) fn encode_gama<W: Write>(self, w: &mut W) -> encoder::Result<()> {
encoder::write_chunk(w, chunk::gAMA, &self.into_scaled().to_be_bytes())
}
}
/// Chromaticities of the color space primaries
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct SourceChromaticities {
pub white: (ScaledFloat, ScaledFloat),
pub red: (ScaledFloat, ScaledFloat),
pub green: (ScaledFloat, ScaledFloat),
pub blue: (ScaledFloat, ScaledFloat),
}
impl SourceChromaticities {
pub fn new(white: (f32, f32), red: (f32, f32), green: (f32, f32), blue: (f32, f32)) -> Self {
SourceChromaticities {
white: (ScaledFloat::new(white.0), ScaledFloat::new(white.1)),
red: (ScaledFloat::new(red.0), ScaledFloat::new(red.1)),
green: (ScaledFloat::new(green.0), ScaledFloat::new(green.1)),
blue: (ScaledFloat::new(blue.0), ScaledFloat::new(blue.1)),
}
}
#[rustfmt::skip]
pub fn to_be_bytes(self) -> [u8; 32] {
let white_x = self.white.0.into_scaled().to_be_bytes();
let white_y = self.white.1.into_scaled().to_be_bytes();
let red_x = self.red.0.into_scaled().to_be_bytes();
let red_y = self.red.1.into_scaled().to_be_bytes();
let green_x = self.green.0.into_scaled().to_be_bytes();
let green_y = self.green.1.into_scaled().to_be_bytes();
let blue_x = self.blue.0.into_scaled().to_be_bytes();
let blue_y = self.blue.1.into_scaled().to_be_bytes();
[
white_x[0], white_x[1], white_x[2], white_x[3],
white_y[0], white_y[1], white_y[2], white_y[3],
red_x[0], red_x[1], red_x[2], red_x[3],
red_y[0], red_y[1], red_y[2], red_y[3],
green_x[0], green_x[1], green_x[2], green_x[3],
green_y[0], green_y[1], green_y[2], green_y[3],
blue_x[0], blue_x[1], blue_x[2], blue_x[3],
blue_y[0], blue_y[1], blue_y[2], blue_y[3],
]
}
pub fn encode<W: Write>(self, w: &mut W) -> encoder::Result<()> {
encoder::write_chunk(w, chunk::cHRM, &self.to_be_bytes())
}
}
/// The rendering intent for an sRGB image.
///
/// Presence of this data also indicates that the image conforms to the sRGB color space.
#[repr(u8)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum SrgbRenderingIntent {
/// For images preferring good adaptation to the output device gamut at the expense of colorimetric accuracy, such as photographs.
Perceptual = 0,
/// For images requiring colour appearance matching (relative to the output device white point), such as logos.
RelativeColorimetric = 1,
/// For images preferring preservation of saturation at the expense of hue and lightness, such as charts and graphs.
Saturation = 2,
/// For images requiring preservation of absolute colorimetry, such as previews of images destined for a different output device (proofs).
AbsoluteColorimetric = 3,
}
impl SrgbRenderingIntent {
pub(crate) fn into_raw(self) -> u8 {
self as u8
}
pub(crate) fn from_raw(raw: u8) -> Option<Self> {
match raw {
0 => Some(SrgbRenderingIntent::Perceptual),
1 => Some(SrgbRenderingIntent::RelativeColorimetric),
2 => Some(SrgbRenderingIntent::Saturation),
3 => Some(SrgbRenderingIntent::AbsoluteColorimetric),
_ => None,
}
}
pub fn encode<W: Write>(self, w: &mut W) -> encoder::Result<()> {
encoder::write_chunk(w, chunk::sRGB, &[self.into_raw()])
}
}
/// PNG info struct
#[derive(Clone, Debug)]
#[non_exhaustive]
pub struct Info<'a> {
pub width: u32,
pub height: u32,
pub bit_depth: BitDepth,
/// How colors are stored in the image.
pub color_type: ColorType,
pub interlaced: bool,
/// The image's `tRNS` chunk, if present; contains the alpha channel of the image's palette, 1 byte per entry.
pub trns: Option<Cow<'a, [u8]>>,
pub pixel_dims: Option<PixelDimensions>,
/// The image's `PLTE` chunk, if present; contains the RGB channels (in that order) of the image's palettes, 3 bytes per entry (1 per channel).
pub palette: Option<Cow<'a, [u8]>>,
/// The contents of the image's gAMA chunk, if present.
/// Prefer `source_gamma` to also get the derived replacement gamma from sRGB chunks.
pub gama_chunk: Option<ScaledFloat>,
/// The contents of the image's `cHRM` chunk, if present.
/// Prefer `source_chromaticities` to also get the derived replacements from sRGB chunks.
pub chrm_chunk: Option<SourceChromaticities>,
pub frame_control: Option<FrameControl>,
pub animation_control: Option<AnimationControl>,
pub compression: Compression,
/// Gamma of the source system.
/// Set by both `gAMA` as well as to a replacement by `sRGB` chunk.
pub source_gamma: Option<ScaledFloat>,
/// Chromaticities of the source system.
/// Set by both `cHRM` as well as to a replacement by `sRGB` chunk.
pub source_chromaticities: Option<SourceChromaticities>,
/// The rendering intent of an SRGB image.
///
/// Presence of this value also indicates that the image conforms to the SRGB color space.
pub srgb: Option<SrgbRenderingIntent>,
/// The ICC profile for the image.
pub icc_profile: Option<Cow<'a, [u8]>>,
/// tEXt field
pub uncompressed_latin1_text: Vec<TEXtChunk>,
/// zTXt field
pub compressed_latin1_text: Vec<ZTXtChunk>,
/// iTXt field
pub utf8_text: Vec<ITXtChunk>,
}
impl Default for Info<'_> {
fn default() -> Info<'static> {
Info {
width: 0,
height: 0,
bit_depth: BitDepth::Eight,
color_type: ColorType::Grayscale,
interlaced: false,
palette: None,
trns: None,
gama_chunk: None,
chrm_chunk: None,
pixel_dims: None,
frame_control: None,
animation_control: None,
// Default to `deflate::Compression::Fast` and `filter::FilterType::Sub`
// to maintain backward compatible output.
compression: Compression::Fast,
source_gamma: None,
source_chromaticities: None,
srgb: None,
icc_profile: None,
uncompressed_latin1_text: Vec::new(),
compressed_latin1_text: Vec::new(),
utf8_text: Vec::new(),
}
}
}
impl Info<'_> {
/// A utility constructor for a default info with width and height.
pub fn with_size(width: u32, height: u32) -> Self {
Info {
width,
height,
..Default::default()
}
}
/// Size of the image, width then height.
pub fn size(&self) -> (u32, u32) {
(self.width, self.height)
}
/// Returns true if the image is an APNG image.
pub fn is_animated(&self) -> bool {
self.frame_control.is_some() && self.animation_control.is_some()
}
/// Returns the frame control information of the image.
pub fn animation_control(&self) -> Option<&AnimationControl> {
self.animation_control.as_ref()
}
/// Returns the frame control information of the current frame
pub fn frame_control(&self) -> Option<&FrameControl> {
self.frame_control.as_ref()
}
/// Returns the number of bits per pixel.
pub fn bits_per_pixel(&self) -> usize {
self.color_type.samples() * self.bit_depth as usize
}
/// Returns the number of bytes per pixel.
pub fn bytes_per_pixel(&self) -> usize {
// If adjusting this for expansion or other transformation passes, remember to keep the old
// implementation for bpp_in_prediction, which is internal to the png specification.
self.color_type.samples() * ((self.bit_depth as usize + 7) >> 3)
}
/// Return the number of bytes for this pixel used in prediction.
///
/// Some filters use prediction, over the raw bytes of a scanline. Where a previous pixel is
/// require for such forms the specification instead references previous bytes. That is, for
/// a gray pixel of bit depth 2, the pixel used in prediction is actually 4 pixels prior. This
/// has the consequence that the number of possible values is rather small. To make this fact
/// more obvious in the type system and the optimizer we use an explicit enum here.
pub(crate) fn bpp_in_prediction(&self) -> BytesPerPixel {
BytesPerPixel::from_usize(self.bytes_per_pixel())
}
/// Returns the number of bytes needed for one deinterlaced image.
pub fn raw_bytes(&self) -> usize {
self.height as usize * self.raw_row_length()
}
/// Returns the number of bytes needed for one deinterlaced row.
pub fn raw_row_length(&self) -> usize {
self.raw_row_length_from_width(self.width)
}
pub(crate) fn checked_raw_row_length(&self) -> Option<usize> {
self.color_type
.checked_raw_row_length(self.bit_depth, self.width)
}
/// Returns the number of bytes needed for one deinterlaced row of width `width`.
pub fn raw_row_length_from_width(&self, width: u32) -> usize {
self.color_type
.raw_row_length_from_width(self.bit_depth, width)
}
/// Encode this header to the writer.
///
/// Note that this does _not_ include the PNG signature, it starts with the IHDR chunk and then
/// includes other chunks that were added to the header.
pub fn encode<W: Write>(&self, mut w: W) -> encoder::Result<()> {
// Encode the IHDR chunk
let mut data = [0; 13];
data[..4].copy_from_slice(&self.width.to_be_bytes());
data[4..8].copy_from_slice(&self.height.to_be_bytes());
data[8] = self.bit_depth as u8;
data[9] = self.color_type as u8;
data[12] = self.interlaced as u8;
encoder::write_chunk(&mut w, chunk::IHDR, &data)?;
// Encode the pHYs chunk
if let Some(pd) = self.pixel_dims {
let mut phys_data = [0; 9];
phys_data[0..4].copy_from_slice(&pd.xppu.to_be_bytes());
phys_data[4..8].copy_from_slice(&pd.yppu.to_be_bytes());
match pd.unit {
Unit::Meter => phys_data[8] = 1,
Unit::Unspecified => phys_data[8] = 0,
}
encoder::write_chunk(&mut w, chunk::pHYs, &phys_data)?;
}
if let Some(p) = &self.palette {
encoder::write_chunk(&mut w, chunk::PLTE, p)?;
};
if let Some(t) = &self.trns {
encoder::write_chunk(&mut w, chunk::tRNS, t)?;
}
// If specified, the sRGB information overrides the source gamma and chromaticities.
if let Some(srgb) = &self.srgb {
let gamma = crate::srgb::substitute_gamma();
let chromaticities = crate::srgb::substitute_chromaticities();
srgb.encode(&mut w)?;
gamma.encode_gama(&mut w)?;
chromaticities.encode(&mut w)?;
} else {
if let Some(gma) = self.source_gamma {
gma.encode_gama(&mut w)?
}
if let Some(chrms) = self.source_chromaticities {
chrms.encode(&mut w)?;
}
}
if let Some(actl) = self.animation_control {
actl.encode(&mut w)?;
}
for text_chunk in &self.uncompressed_latin1_text {
text_chunk.encode(&mut w)?;
}
for text_chunk in &self.compressed_latin1_text {
text_chunk.encode(&mut w)?;
}
for text_chunk in &self.utf8_text {
text_chunk.encode(&mut w)?;
}
Ok(())
}
}
impl BytesPerPixel {
pub(crate) fn from_usize(bpp: usize) -> Self {
match bpp {
1 => BytesPerPixel::One,
2 => BytesPerPixel::Two,
3 => BytesPerPixel::Three,
4 => BytesPerPixel::Four,
6 => BytesPerPixel::Six, // Only rgb×16bit
8 => BytesPerPixel::Eight, // Only rgba×16bit
_ => unreachable!("Not a possible byte rounded pixel width"),
}
}
pub(crate) fn into_usize(self) -> usize {
self as usize
}
}
bitflags::bitflags! {
/// Output transformations
///
/// Many flags from libpng are not yet supported. A PR discussing/adding them would be nice.
///
#[doc = "
```c
/// Discard the alpha channel
const STRIP_ALPHA = 0x0002; // read only
/// Expand 1; 2 and 4-bit samples to bytes
const PACKING = 0x0004; // read and write
/// Change order of packed pixels to LSB first
const PACKSWAP = 0x0008; // read and write
/// Invert monochrome images
const INVERT_MONO = 0x0020; // read and write
/// Normalize pixels to the sBIT depth
const SHIFT = 0x0040; // read and write
/// Flip RGB to BGR; RGBA to BGRA
const BGR = 0x0080; // read and write
/// Flip RGBA to ARGB or GA to AG
const SWAP_ALPHA = 0x0100; // read and write
/// Byte-swap 16-bit samples
const SWAP_ENDIAN = 0x0200; // read and write
/// Change alpha from opacity to transparency
const INVERT_ALPHA = 0x0400; // read and write
const STRIP_FILLER = 0x0800; // write only
const STRIP_FILLER_BEFORE = 0x0800; // write only
const STRIP_FILLER_AFTER = 0x1000; // write only
const GRAY_TO_RGB = 0x2000; // read only
const EXPAND_16 = 0x4000; // read only
/// Similar to STRIP_16 but in libpng considering gamma?
/// Not entirely sure the documentation says it is more
/// accurate but doesn't say precisely how.
const SCALE_16 = 0x8000; // read only
```
"]
pub struct Transformations: u32 {
/// No transformation
const IDENTITY = 0x00000; // read and write */
/// Strip 16-bit samples to 8 bits
const STRIP_16 = 0x00001; // read only */
/// Expand paletted images to RGB; expand grayscale images of
/// less than 8-bit depth to 8-bit depth; and expand tRNS chunks
/// to alpha channels.
const EXPAND = 0x00010; // read only */
/// Expand paletted images to include an alpha channel. Implies `EXPAND`.
const ALPHA = 0x10000; // read only */
}
}
impl Transformations {
/// Transform every input to 8bit grayscale or color.
///
/// This sets `EXPAND` and `STRIP_16` which is similar to the default transformation used by
/// this library prior to `0.17`.
pub fn normalize_to_color8() -> Transformations {
Transformations::EXPAND | Transformations::STRIP_16
}
}
/// Instantiate the default transformations, the identity transform.
impl Default for Transformations {
fn default() -> Transformations {
Transformations::IDENTITY
}
}
#[derive(Debug)]
pub struct ParameterError {
inner: ParameterErrorKind,
}
#[derive(Debug)]
pub(crate) enum ParameterErrorKind {
/// A provided buffer must be have the exact size to hold the image data. Where the buffer can
/// be allocated by the caller, they must ensure that it has a minimum size as hinted previously.
/// Even though the size is calculated from image data, this does counts as a parameter error
/// because they must react to a value produced by this library, which can have been subjected
/// to limits.
ImageBufferSize { expected: usize, actual: usize },
/// A bit like return `None` from an iterator.
/// We use it to differentiate between failing to seek to the next image in a sequence and the
/// absence of a next image. This is an error of the caller because they should have checked
/// the number of images by inspecting the header data returned when opening the image. This
/// library will perform the checks necessary to ensure that data was accurate or error with a
/// format error otherwise.
PolledAfterEndOfImage,
}
impl From<ParameterErrorKind> for ParameterError {
fn from(inner: ParameterErrorKind) -> Self {
ParameterError { inner }
}
}
impl fmt::Display for ParameterError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
use ParameterErrorKind::*;
match self.inner {
ImageBufferSize { expected, actual } => {
write!(fmt, "wrong data size, expected {} got {}", expected, actual)
}
PolledAfterEndOfImage => write!(fmt, "End of image has been reached"),
}
}
}