1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
use std::hash::Hash;
use std::hint::unreachable_unchecked;
use crate::bitmap::utils::{BitmapIter, ZipValidity};
use crate::bitmap::Bitmap;
use crate::datatypes::{ArrowDataType, IntegerType};
use crate::scalar::{new_scalar, Scalar};
use crate::trusted_len::TrustedLen;
use crate::types::NativeType;
#[cfg(feature = "arrow_rs")]
mod data;
mod ffi;
pub(super) mod fmt;
mod iterator;
mod mutable;
use crate::array::specification::check_indexes_unchecked;
mod typed_iterator;
mod value_map;
pub use iterator::*;
pub use mutable::*;
use polars_error::{polars_bail, PolarsResult};
use super::primitive::PrimitiveArray;
use super::specification::check_indexes;
use super::{new_empty_array, new_null_array, Array, Splitable};
use crate::array::dictionary::typed_iterator::{
DictValue, DictionaryIterTyped, DictionaryValuesIterTyped,
};
/// Trait denoting [`NativeType`]s that can be used as keys of a dictionary.
/// # Safety
///
/// Any implementation of this trait must ensure that `always_fits_usize` only
/// returns `true` if all values succeeds on `value::try_into::<usize>().unwrap()`.
pub unsafe trait DictionaryKey: NativeType + TryInto<usize> + TryFrom<usize> + Hash {
/// The corresponding [`IntegerType`] of this key
const KEY_TYPE: IntegerType;
/// Represents this key as a `usize`.
///
/// # Safety
/// The caller _must_ have checked that the value can be casted to `usize`.
#[inline]
unsafe fn as_usize(self) -> usize {
match self.try_into() {
Ok(v) => v,
Err(_) => unreachable_unchecked(),
}
}
/// If the key type always can be converted to `usize`.
fn always_fits_usize() -> bool {
false
}
}
unsafe impl DictionaryKey for i8 {
const KEY_TYPE: IntegerType = IntegerType::Int8;
}
unsafe impl DictionaryKey for i16 {
const KEY_TYPE: IntegerType = IntegerType::Int16;
}
unsafe impl DictionaryKey for i32 {
const KEY_TYPE: IntegerType = IntegerType::Int32;
}
unsafe impl DictionaryKey for i64 {
const KEY_TYPE: IntegerType = IntegerType::Int64;
}
unsafe impl DictionaryKey for u8 {
const KEY_TYPE: IntegerType = IntegerType::UInt8;
fn always_fits_usize() -> bool {
true
}
}
unsafe impl DictionaryKey for u16 {
const KEY_TYPE: IntegerType = IntegerType::UInt16;
fn always_fits_usize() -> bool {
true
}
}
unsafe impl DictionaryKey for u32 {
const KEY_TYPE: IntegerType = IntegerType::UInt32;
fn always_fits_usize() -> bool {
true
}
}
unsafe impl DictionaryKey for u64 {
const KEY_TYPE: IntegerType = IntegerType::UInt64;
#[cfg(target_pointer_width = "64")]
fn always_fits_usize() -> bool {
true
}
}
/// An [`Array`] whose values are stored as indices. This [`Array`] is useful when the cardinality of
/// values is low compared to the length of the [`Array`].
///
/// # Safety
/// This struct guarantees that each item of [`DictionaryArray::keys`] is castable to `usize` and
/// its value is smaller than [`DictionaryArray::values`]`.len()`. In other words, you can safely
/// use `unchecked` calls to retrieve the values
#[derive(Clone)]
pub struct DictionaryArray<K: DictionaryKey> {
data_type: ArrowDataType,
keys: PrimitiveArray<K>,
values: Box<dyn Array>,
}
fn check_data_type(
key_type: IntegerType,
data_type: &ArrowDataType,
values_data_type: &ArrowDataType,
) -> PolarsResult<()> {
if let ArrowDataType::Dictionary(key, value, _) = data_type.to_logical_type() {
if *key != key_type {
polars_bail!(ComputeError: "DictionaryArray must be initialized with a DataType::Dictionary whose integer is compatible to its keys")
}
if value.as_ref().to_logical_type() != values_data_type.to_logical_type() {
polars_bail!(ComputeError: "DictionaryArray must be initialized with a DataType::Dictionary whose value is equal to its values")
}
} else {
polars_bail!(ComputeError: "DictionaryArray must be initialized with logical DataType::Dictionary")
}
Ok(())
}
impl<K: DictionaryKey> DictionaryArray<K> {
/// Returns a new [`DictionaryArray`].
/// # Implementation
/// This function is `O(N)` where `N` is the length of keys
/// # Errors
/// This function errors iff
/// * the `data_type`'s logical type is not a `DictionaryArray`
/// * the `data_type`'s keys is not compatible with `keys`
/// * the `data_type`'s values's data_type is not equal with `values.data_type()`
/// * any of the keys's values is not represented in `usize` or is `>= values.len()`
pub fn try_new(
data_type: ArrowDataType,
keys: PrimitiveArray<K>,
values: Box<dyn Array>,
) -> PolarsResult<Self> {
check_data_type(K::KEY_TYPE, &data_type, values.data_type())?;
if keys.null_count() != keys.len() {
if K::always_fits_usize() {
// SAFETY: we just checked that conversion to `usize` always
// succeeds
unsafe { check_indexes_unchecked(keys.values(), values.len()) }?;
} else {
check_indexes(keys.values(), values.len())?;
}
}
Ok(Self {
data_type,
keys,
values,
})
}
/// Returns a new [`DictionaryArray`].
/// # Implementation
/// This function is `O(N)` where `N` is the length of keys
/// # Errors
/// This function errors iff
/// * any of the keys's values is not represented in `usize` or is `>= values.len()`
pub fn try_from_keys(keys: PrimitiveArray<K>, values: Box<dyn Array>) -> PolarsResult<Self> {
let data_type = Self::default_data_type(values.data_type().clone());
Self::try_new(data_type, keys, values)
}
/// Returns a new [`DictionaryArray`].
/// # Errors
/// This function errors iff
/// * the `data_type`'s logical type is not a `DictionaryArray`
/// * the `data_type`'s keys is not compatible with `keys`
/// * the `data_type`'s values's data_type is not equal with `values.data_type()`
///
/// # Safety
/// The caller must ensure that every keys's values is represented in `usize` and is `< values.len()`
pub unsafe fn try_new_unchecked(
data_type: ArrowDataType,
keys: PrimitiveArray<K>,
values: Box<dyn Array>,
) -> PolarsResult<Self> {
check_data_type(K::KEY_TYPE, &data_type, values.data_type())?;
Ok(Self {
data_type,
keys,
values,
})
}
/// Returns a new empty [`DictionaryArray`].
pub fn new_empty(data_type: ArrowDataType) -> Self {
let values = Self::try_get_child(&data_type).unwrap();
let values = new_empty_array(values.clone());
Self::try_new(
data_type,
PrimitiveArray::<K>::new_empty(K::PRIMITIVE.into()),
values,
)
.unwrap()
}
/// Returns an [`DictionaryArray`] whose all elements are null
#[inline]
pub fn new_null(data_type: ArrowDataType, length: usize) -> Self {
let values = Self::try_get_child(&data_type).unwrap();
let values = new_null_array(values.clone(), 1);
Self::try_new(
data_type,
PrimitiveArray::<K>::new_null(K::PRIMITIVE.into(), length),
values,
)
.unwrap()
}
/// Returns an iterator of [`Option<Box<dyn Scalar>>`].
/// # Implementation
/// This function will allocate a new [`Scalar`] per item and is usually not performant.
/// Consider calling `keys_iter` and `values`, downcasting `values`, and iterating over that.
pub fn iter(&self) -> ZipValidity<Box<dyn Scalar>, DictionaryValuesIter<K>, BitmapIter> {
ZipValidity::new_with_validity(DictionaryValuesIter::new(self), self.keys.validity())
}
/// Returns an iterator of [`Box<dyn Scalar>`]
/// # Implementation
/// This function will allocate a new [`Scalar`] per item and is usually not performant.
/// Consider calling `keys_iter` and `values`, downcasting `values`, and iterating over that.
pub fn values_iter(&self) -> DictionaryValuesIter<K> {
DictionaryValuesIter::new(self)
}
/// Returns an iterator over the values [`V::IterValue`].
///
/// # Panics
///
/// Panics if the keys of this [`DictionaryArray`] has any nulls.
/// If they do [`DictionaryArray::iter_typed`] should be used.
pub fn values_iter_typed<V: DictValue>(&self) -> PolarsResult<DictionaryValuesIterTyped<K, V>> {
let keys = &self.keys;
assert_eq!(keys.null_count(), 0);
let values = self.values.as_ref();
let values = V::downcast_values(values)?;
Ok(DictionaryValuesIterTyped::new(keys, values))
}
/// Returns an iterator over the optional values of [`Option<V::IterValue>`].
pub fn iter_typed<V: DictValue>(&self) -> PolarsResult<DictionaryIterTyped<K, V>> {
let keys = &self.keys;
let values = self.values.as_ref();
let values = V::downcast_values(values)?;
Ok(DictionaryIterTyped::new(keys, values))
}
/// Returns the [`ArrowDataType`] of this [`DictionaryArray`]
#[inline]
pub fn data_type(&self) -> &ArrowDataType {
&self.data_type
}
/// Returns whether the values of this [`DictionaryArray`] are ordered
#[inline]
pub fn is_ordered(&self) -> bool {
match self.data_type.to_logical_type() {
ArrowDataType::Dictionary(_, _, is_ordered) => *is_ordered,
_ => unreachable!(),
}
}
pub(crate) fn default_data_type(values_datatype: ArrowDataType) -> ArrowDataType {
ArrowDataType::Dictionary(K::KEY_TYPE, Box::new(values_datatype), false)
}
/// Slices this [`DictionaryArray`].
/// # Panics
/// iff `offset + length > self.len()`.
pub fn slice(&mut self, offset: usize, length: usize) {
self.keys.slice(offset, length);
}
/// Slices this [`DictionaryArray`].
///
/// # Safety
/// Safe iff `offset + length <= self.len()`.
pub unsafe fn slice_unchecked(&mut self, offset: usize, length: usize) {
self.keys.slice_unchecked(offset, length);
}
impl_sliced!();
/// Returns this [`DictionaryArray`] with a new validity.
/// # Panic
/// This function panics iff `validity.len() != self.len()`.
#[must_use]
pub fn with_validity(mut self, validity: Option<Bitmap>) -> Self {
self.set_validity(validity);
self
}
/// Sets the validity of the keys of this [`DictionaryArray`].
/// # Panics
/// This function panics iff `validity.len() != self.len()`.
pub fn set_validity(&mut self, validity: Option<Bitmap>) {
self.keys.set_validity(validity);
}
impl_into_array!();
/// Returns the length of this array
#[inline]
pub fn len(&self) -> usize {
self.keys.len()
}
/// The optional validity. Equivalent to `self.keys().validity()`.
#[inline]
pub fn validity(&self) -> Option<&Bitmap> {
self.keys.validity()
}
/// Returns the keys of the [`DictionaryArray`]. These keys can be used to fetch values
/// from `values`.
#[inline]
pub fn keys(&self) -> &PrimitiveArray<K> {
&self.keys
}
/// Returns an iterator of the keys' values of the [`DictionaryArray`] as `usize`
#[inline]
pub fn keys_values_iter(&self) -> impl TrustedLen<Item = usize> + Clone + '_ {
// SAFETY: invariant of the struct
self.keys.values_iter().map(|x| unsafe { x.as_usize() })
}
/// Returns an iterator of the keys' of the [`DictionaryArray`] as `usize`
#[inline]
pub fn keys_iter(&self) -> impl TrustedLen<Item = Option<usize>> + Clone + '_ {
// SAFETY: invariant of the struct
self.keys.iter().map(|x| x.map(|x| unsafe { x.as_usize() }))
}
/// Returns the keys' value of the [`DictionaryArray`] as `usize`
/// # Panics
/// This function panics iff `index >= self.len()`
#[inline]
pub fn key_value(&self, index: usize) -> usize {
// SAFETY: invariant of the struct
unsafe { self.keys.values()[index].as_usize() }
}
/// Returns the values of the [`DictionaryArray`].
#[inline]
pub fn values(&self) -> &Box<dyn Array> {
&self.values
}
/// Returns the value of the [`DictionaryArray`] at position `i`.
/// # Implementation
/// This function will allocate a new [`Scalar`] and is usually not performant.
/// Consider calling `keys` and `values`, downcasting `values`, and iterating over that.
/// # Panic
/// This function panics iff `index >= self.len()`
#[inline]
pub fn value(&self, index: usize) -> Box<dyn Scalar> {
// SAFETY: invariant of this struct
let index = unsafe { self.keys.value(index).as_usize() };
new_scalar(self.values.as_ref(), index)
}
pub(crate) fn try_get_child(data_type: &ArrowDataType) -> PolarsResult<&ArrowDataType> {
Ok(match data_type.to_logical_type() {
ArrowDataType::Dictionary(_, values, _) => values.as_ref(),
_ => {
polars_bail!(ComputeError: "Dictionaries must be initialized with DataType::Dictionary")
},
})
}
}
impl<K: DictionaryKey> Array for DictionaryArray<K> {
impl_common_array!();
fn validity(&self) -> Option<&Bitmap> {
self.keys.validity()
}
#[inline]
fn with_validity(&self, validity: Option<Bitmap>) -> Box<dyn Array> {
Box::new(self.clone().with_validity(validity))
}
}
impl<K: DictionaryKey> Splitable for DictionaryArray<K> {
fn check_bound(&self, offset: usize) -> bool {
offset < self.len()
}
unsafe fn _split_at_unchecked(&self, offset: usize) -> (Self, Self) {
let (lhs_keys, rhs_keys) = unsafe { Splitable::split_at_unchecked(&self.keys, offset) };
(
Self {
data_type: self.data_type.clone(),
keys: lhs_keys,
values: self.values.clone(),
},
Self {
data_type: self.data_type.clone(),
keys: rhs_keys,
values: self.values.clone(),
},
)
}
}