polars_arrow/bitmap/
bitmap_ops.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
use std::ops::{BitAnd, BitOr, BitXor, Not};

use super::utils::{BitChunk, BitChunkIterExact, BitChunksExact};
use super::Bitmap;
use crate::bitmap::MutableBitmap;
use crate::trusted_len::TrustedLen;

#[inline(always)]
pub(crate) fn push_bitchunk<T: BitChunk>(buffer: &mut Vec<u8>, value: T) {
    buffer.extend(value.to_ne_bytes())
}

/// Creates a [`Vec<u8>`] from a [`TrustedLen`] of [`BitChunk`].
pub fn chunk_iter_to_vec<T: BitChunk, I: TrustedLen<Item = T>>(iter: I) -> Vec<u8> {
    let cap = iter.size_hint().0 * size_of::<T>();
    let mut buffer = Vec::with_capacity(cap);
    for v in iter {
        push_bitchunk(&mut buffer, v)
    }
    buffer
}

fn chunk_iter_to_vec_and_remainder<T: BitChunk, I: TrustedLen<Item = T>>(
    iter: I,
    remainder: T,
) -> Vec<u8> {
    let cap = (iter.size_hint().0 + 1) * size_of::<T>();
    let mut buffer = Vec::with_capacity(cap);
    for v in iter {
        push_bitchunk(&mut buffer, v)
    }
    push_bitchunk(&mut buffer, remainder);
    debug_assert_eq!(buffer.len(), cap);
    buffer
}

/// Apply a bitwise operation `op` to four inputs and return the result as a [`Bitmap`].
pub fn quaternary<F>(a1: &Bitmap, a2: &Bitmap, a3: &Bitmap, a4: &Bitmap, op: F) -> Bitmap
where
    F: Fn(u64, u64, u64, u64) -> u64,
{
    assert_eq!(a1.len(), a2.len());
    assert_eq!(a1.len(), a3.len());
    assert_eq!(a1.len(), a4.len());
    let a1_chunks = a1.chunks();
    let a2_chunks = a2.chunks();
    let a3_chunks = a3.chunks();
    let a4_chunks = a4.chunks();

    let rem_a1 = a1_chunks.remainder();
    let rem_a2 = a2_chunks.remainder();
    let rem_a3 = a3_chunks.remainder();
    let rem_a4 = a4_chunks.remainder();

    let chunks = a1_chunks
        .zip(a2_chunks)
        .zip(a3_chunks)
        .zip(a4_chunks)
        .map(|(((a1, a2), a3), a4)| op(a1, a2, a3, a4));

    let buffer = chunk_iter_to_vec_and_remainder(chunks, op(rem_a1, rem_a2, rem_a3, rem_a4));
    let length = a1.len();

    Bitmap::from_u8_vec(buffer, length)
}

/// Apply a bitwise operation `op` to three inputs and return the result as a [`Bitmap`].
pub fn ternary<F>(a1: &Bitmap, a2: &Bitmap, a3: &Bitmap, op: F) -> Bitmap
where
    F: Fn(u64, u64, u64) -> u64,
{
    assert_eq!(a1.len(), a2.len());
    assert_eq!(a1.len(), a3.len());
    let a1_chunks = a1.chunks();
    let a2_chunks = a2.chunks();
    let a3_chunks = a3.chunks();

    let rem_a1 = a1_chunks.remainder();
    let rem_a2 = a2_chunks.remainder();
    let rem_a3 = a3_chunks.remainder();

    let chunks = a1_chunks
        .zip(a2_chunks)
        .zip(a3_chunks)
        .map(|((a1, a2), a3)| op(a1, a2, a3));

    let buffer = chunk_iter_to_vec_and_remainder(chunks, op(rem_a1, rem_a2, rem_a3));
    let length = a1.len();

    Bitmap::from_u8_vec(buffer, length)
}

/// Apply a bitwise operation `op` to two inputs and return the result as a [`Bitmap`].
pub fn binary<F>(lhs: &Bitmap, rhs: &Bitmap, op: F) -> Bitmap
where
    F: Fn(u64, u64) -> u64,
{
    assert_eq!(lhs.len(), rhs.len());
    let lhs_chunks = lhs.chunks();
    let rhs_chunks = rhs.chunks();
    let rem_lhs = lhs_chunks.remainder();
    let rem_rhs = rhs_chunks.remainder();

    let chunks = lhs_chunks
        .zip(rhs_chunks)
        .map(|(left, right)| op(left, right));

    let buffer = chunk_iter_to_vec_and_remainder(chunks, op(rem_lhs, rem_rhs));
    let length = lhs.len();

    Bitmap::from_u8_vec(buffer, length)
}

/// Apply a bitwise operation `op` to two inputs and fold the result.
pub fn binary_fold<B, F, R>(lhs: &Bitmap, rhs: &Bitmap, op: F, init: B, fold: R) -> B
where
    F: Fn(u64, u64) -> B,
    R: Fn(B, B) -> B,
{
    assert_eq!(lhs.len(), rhs.len());
    let lhs_chunks = lhs.chunks();
    let rhs_chunks = rhs.chunks();
    let rem_lhs = lhs_chunks.remainder();
    let rem_rhs = rhs_chunks.remainder();

    let result = lhs_chunks
        .zip(rhs_chunks)
        .fold(init, |prev, (left, right)| fold(prev, op(left, right)));

    fold(result, op(rem_lhs, rem_rhs))
}

/// Apply a bitwise operation `op` to two inputs and fold the result.
pub fn binary_fold_mut<B, F, R>(
    lhs: &MutableBitmap,
    rhs: &MutableBitmap,
    op: F,
    init: B,
    fold: R,
) -> B
where
    F: Fn(u64, u64) -> B,
    R: Fn(B, B) -> B,
{
    assert_eq!(lhs.len(), rhs.len());
    let lhs_chunks = lhs.chunks();
    let rhs_chunks = rhs.chunks();
    let rem_lhs = lhs_chunks.remainder();
    let rem_rhs = rhs_chunks.remainder();

    let result = lhs_chunks
        .zip(rhs_chunks)
        .fold(init, |prev, (left, right)| fold(prev, op(left, right)));

    fold(result, op(rem_lhs, rem_rhs))
}

fn unary_impl<F, I>(iter: I, op: F, length: usize) -> Bitmap
where
    I: BitChunkIterExact<u64>,
    F: Fn(u64) -> u64,
{
    let rem = op(iter.remainder());
    let buffer = chunk_iter_to_vec_and_remainder(iter.map(op), rem);

    Bitmap::from_u8_vec(buffer, length)
}

/// Apply a bitwise operation `op` to one input and return the result as a [`Bitmap`].
pub fn unary<F>(lhs: &Bitmap, op: F) -> Bitmap
where
    F: Fn(u64) -> u64,
{
    let (slice, offset, length) = lhs.as_slice();
    if offset == 0 {
        let iter = BitChunksExact::<u64>::new(slice, length);
        unary_impl(iter, op, lhs.len())
    } else {
        let iter = lhs.chunks::<u64>();
        unary_impl(iter, op, lhs.len())
    }
}

// create a new [`Bitmap`] semantically equal to ``bitmap`` but with an offset equal to ``offset``
pub(crate) fn align(bitmap: &Bitmap, new_offset: usize) -> Bitmap {
    let length = bitmap.len();

    let bitmap: Bitmap = std::iter::repeat(false)
        .take(new_offset)
        .chain(bitmap.iter())
        .collect();

    bitmap.sliced(new_offset, length)
}

/// Compute bitwise A AND B operation.
pub fn and(lhs: &Bitmap, rhs: &Bitmap) -> Bitmap {
    if lhs.unset_bits() == lhs.len() || rhs.unset_bits() == rhs.len() {
        assert_eq!(lhs.len(), rhs.len());
        Bitmap::new_zeroed(lhs.len())
    } else {
        binary(lhs, rhs, |x, y| x & y)
    }
}

/// Compute bitwise A AND NOT B operation.
pub fn and_not(lhs: &Bitmap, rhs: &Bitmap) -> Bitmap {
    binary(lhs, rhs, |x, y| x & !y)
}

/// Compute bitwise A OR B operation.
pub fn or(lhs: &Bitmap, rhs: &Bitmap) -> Bitmap {
    if lhs.unset_bits() == 0 || rhs.unset_bits() == 0 {
        assert_eq!(lhs.len(), rhs.len());
        let mut mutable = MutableBitmap::with_capacity(lhs.len());
        mutable.extend_constant(lhs.len(), true);
        mutable.into()
    } else {
        binary(lhs, rhs, |x, y| x | y)
    }
}

/// Compute bitwise A OR NOT B operation.
pub fn or_not(lhs: &Bitmap, rhs: &Bitmap) -> Bitmap {
    binary(lhs, rhs, |x, y| x | !y)
}

/// Compute bitwise XOR operation.
pub fn xor(lhs: &Bitmap, rhs: &Bitmap) -> Bitmap {
    let lhs_nulls = lhs.unset_bits();
    let rhs_nulls = rhs.unset_bits();

    // all false or all true
    if lhs_nulls == rhs_nulls && rhs_nulls == rhs.len() || lhs_nulls == 0 && rhs_nulls == 0 {
        assert_eq!(lhs.len(), rhs.len());
        Bitmap::new_zeroed(rhs.len())
    }
    // all false and all true or vice versa
    else if (lhs_nulls == 0 && rhs_nulls == rhs.len())
        || (lhs_nulls == lhs.len() && rhs_nulls == 0)
    {
        assert_eq!(lhs.len(), rhs.len());
        let mut mutable = MutableBitmap::with_capacity(lhs.len());
        mutable.extend_constant(lhs.len(), true);
        mutable.into()
    } else {
        binary(lhs, rhs, |x, y| x ^ y)
    }
}

/// Compute bitwise equality (not XOR) operation.
fn eq(lhs: &Bitmap, rhs: &Bitmap) -> bool {
    if lhs.len() != rhs.len() {
        return false;
    }

    let mut lhs_chunks = lhs.chunks::<u64>();
    let mut rhs_chunks = rhs.chunks::<u64>();

    let equal_chunks = lhs_chunks
        .by_ref()
        .zip(rhs_chunks.by_ref())
        .all(|(left, right)| left == right);

    if !equal_chunks {
        return false;
    }
    let lhs_remainder = lhs_chunks.remainder_iter();
    let rhs_remainder = rhs_chunks.remainder_iter();
    lhs_remainder.zip(rhs_remainder).all(|(x, y)| x == y)
}

pub fn num_intersections_with(lhs: &Bitmap, rhs: &Bitmap) -> usize {
    binary_fold(
        lhs,
        rhs,
        |lhs, rhs| (lhs & rhs).count_ones() as usize,
        0,
        |lhs, rhs| lhs + rhs,
    )
}

pub fn intersects_with(lhs: &Bitmap, rhs: &Bitmap) -> bool {
    binary_fold(
        lhs,
        rhs,
        |lhs, rhs| lhs & rhs != 0,
        false,
        |lhs, rhs| lhs || rhs,
    )
}

pub fn intersects_with_mut(lhs: &MutableBitmap, rhs: &MutableBitmap) -> bool {
    binary_fold_mut(
        lhs,
        rhs,
        |lhs, rhs| lhs & rhs != 0,
        false,
        |lhs, rhs| lhs || rhs,
    )
}

pub fn num_edges(lhs: &Bitmap) -> usize {
    if lhs.is_empty() {
        return 0;
    }

    // @TODO: If is probably quite inefficient to do it like this because now either one is not
    // aligned. Maybe, we can implement a smarter way to do this.
    binary_fold(
        &unsafe { lhs.clone().sliced_unchecked(0, lhs.len() - 1) },
        &unsafe { lhs.clone().sliced_unchecked(1, lhs.len() - 1) },
        |l, r| (l ^ r).count_ones() as usize,
        0,
        |acc, v| acc + v,
    )
}

/// Compute `out[i] = if selector[i] { truthy[i] } else { falsy }`.
pub fn select_constant(selector: &Bitmap, truthy: &Bitmap, falsy: bool) -> Bitmap {
    let falsy_mask: u64 = if falsy {
        0xFFFF_FFFF_FFFF_FFFF
    } else {
        0x0000_0000_0000_0000
    };

    binary(selector, truthy, |s, t| (s & t) | (!s & falsy_mask))
}

/// Compute `out[i] = if selector[i] { truthy[i] } else { falsy[i] }`.
pub fn select(selector: &Bitmap, truthy: &Bitmap, falsy: &Bitmap) -> Bitmap {
    ternary(selector, truthy, falsy, |s, t, f| (s & t) | (!s & f))
}

impl PartialEq for Bitmap {
    fn eq(&self, other: &Self) -> bool {
        eq(self, other)
    }
}

impl<'b> BitOr<&'b Bitmap> for &Bitmap {
    type Output = Bitmap;

    fn bitor(self, rhs: &'b Bitmap) -> Bitmap {
        or(self, rhs)
    }
}

impl<'b> BitAnd<&'b Bitmap> for &Bitmap {
    type Output = Bitmap;

    fn bitand(self, rhs: &'b Bitmap) -> Bitmap {
        and(self, rhs)
    }
}

impl<'b> BitXor<&'b Bitmap> for &Bitmap {
    type Output = Bitmap;

    fn bitxor(self, rhs: &'b Bitmap) -> Bitmap {
        xor(self, rhs)
    }
}

impl Not for &Bitmap {
    type Output = Bitmap;

    fn not(self) -> Bitmap {
        unary(self, |a| !a)
    }
}