polars_arrow/bitmap/immutable.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
use std::ops::Deref;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::LazyLock;
use either::Either;
use polars_error::{polars_bail, PolarsResult};
use super::utils::{count_zeros, fmt, get_bit_unchecked, BitChunk, BitChunks, BitmapIter};
use super::{chunk_iter_to_vec, intersects_with, num_intersections_with, IntoIter, MutableBitmap};
use crate::array::Splitable;
use crate::bitmap::aligned::AlignedBitmapSlice;
use crate::bitmap::iterator::{
FastU32BitmapIter, FastU56BitmapIter, FastU64BitmapIter, TrueIdxIter,
};
use crate::legacy::utils::FromTrustedLenIterator;
use crate::storage::SharedStorage;
use crate::trusted_len::TrustedLen;
const UNKNOWN_BIT_COUNT: u64 = u64::MAX;
/// An immutable container semantically equivalent to `Arc<Vec<bool>>` but represented as `Arc<Vec<u8>>` where
/// each boolean is represented as a single bit.
///
/// # Examples
/// ```
/// use polars_arrow::bitmap::{Bitmap, MutableBitmap};
///
/// let bitmap = Bitmap::from([true, false, true]);
/// assert_eq!(bitmap.iter().collect::<Vec<_>>(), vec![true, false, true]);
///
/// // creation directly from bytes
/// let bitmap = Bitmap::try_new(vec![0b00001101], 5).unwrap();
/// // note: the first bit is the left-most of the first byte
/// assert_eq!(bitmap.iter().collect::<Vec<_>>(), vec![true, false, true, true, false]);
/// // we can also get the slice:
/// assert_eq!(bitmap.as_slice(), ([0b00001101u8].as_ref(), 0, 5));
/// // debug helps :)
/// assert_eq!(format!("{:?}", bitmap), "Bitmap { len: 5, offset: 0, bytes: [0b___01101] }");
///
/// // it supports copy-on-write semantics (to a `MutableBitmap`)
/// let bitmap: MutableBitmap = bitmap.into_mut().right().unwrap();
/// assert_eq!(bitmap, MutableBitmap::from([true, false, true, true, false]));
///
/// // slicing is 'O(1)' (data is shared)
/// let bitmap = Bitmap::try_new(vec![0b00001101], 5).unwrap();
/// let mut sliced = bitmap.clone();
/// sliced.slice(1, 4);
/// assert_eq!(sliced.as_slice(), ([0b00001101u8].as_ref(), 1, 4)); // 1 here is the offset:
/// assert_eq!(format!("{:?}", sliced), "Bitmap { len: 4, offset: 1, bytes: [0b___0110_] }");
/// // when sliced (or cloned), it is no longer possible to `into_mut`.
/// let same: Bitmap = sliced.into_mut().left().unwrap();
/// ```
pub struct Bitmap {
storage: SharedStorage<u8>,
// Both offset and length are measured in bits. They are used to bound the
// bitmap to a region of Bytes.
offset: usize,
length: usize,
// A bit field that contains our cache for the number of unset bits.
// If it is u64::MAX, we have no known value at all.
// Other bit patterns where the top bit is set is reserved for future use.
// If the top bit is not set we have an exact count.
unset_bit_count_cache: AtomicU64,
}
#[inline(always)]
fn has_cached_unset_bit_count(ubcc: u64) -> bool {
ubcc >> 63 == 0
}
impl Clone for Bitmap {
fn clone(&self) -> Self {
Self {
storage: self.storage.clone(),
offset: self.offset,
length: self.length,
unset_bit_count_cache: AtomicU64::new(
self.unset_bit_count_cache.load(Ordering::Relaxed),
),
}
}
}
impl std::fmt::Debug for Bitmap {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let (bytes, offset, len) = self.as_slice();
fmt(bytes, offset, len, f)
}
}
impl Default for Bitmap {
fn default() -> Self {
MutableBitmap::new().into()
}
}
pub(super) fn check(bytes: &[u8], offset: usize, length: usize) -> PolarsResult<()> {
if offset + length > bytes.len().saturating_mul(8) {
polars_bail!(InvalidOperation:
"The offset + length of the bitmap ({}) must be `<=` to the number of bytes times 8 ({})",
offset + length,
bytes.len().saturating_mul(8)
);
}
Ok(())
}
impl Bitmap {
/// Initializes an empty [`Bitmap`].
#[inline]
pub fn new() -> Self {
Self::default()
}
/// Initializes a new [`Bitmap`] from vector of bytes and a length.
/// # Errors
/// This function errors iff `length > bytes.len() * 8`
#[inline]
pub fn try_new(bytes: Vec<u8>, length: usize) -> PolarsResult<Self> {
check(&bytes, 0, length)?;
Ok(Self {
storage: SharedStorage::from_vec(bytes),
length,
offset: 0,
unset_bit_count_cache: AtomicU64::new(if length == 0 { 0 } else { UNKNOWN_BIT_COUNT }),
})
}
/// Returns the length of the [`Bitmap`].
#[inline]
pub fn len(&self) -> usize {
self.length
}
/// Returns whether [`Bitmap`] is empty
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns a new iterator of `bool` over this bitmap
pub fn iter(&self) -> BitmapIter {
BitmapIter::new(&self.storage, self.offset, self.length)
}
/// Returns an iterator over bits in bit chunks [`BitChunk`].
///
/// This iterator is useful to operate over multiple bits via e.g. bitwise.
pub fn chunks<T: BitChunk>(&self) -> BitChunks<T> {
BitChunks::new(&self.storage, self.offset, self.length)
}
/// Returns a fast iterator that gives 32 bits at a time.
/// Has a remainder that must be handled separately.
pub fn fast_iter_u32(&self) -> FastU32BitmapIter<'_> {
FastU32BitmapIter::new(&self.storage, self.offset, self.length)
}
/// Returns a fast iterator that gives 56 bits at a time.
/// Has a remainder that must be handled separately.
pub fn fast_iter_u56(&self) -> FastU56BitmapIter<'_> {
FastU56BitmapIter::new(&self.storage, self.offset, self.length)
}
/// Returns a fast iterator that gives 64 bits at a time.
/// Has a remainder that must be handled separately.
pub fn fast_iter_u64(&self) -> FastU64BitmapIter<'_> {
FastU64BitmapIter::new(&self.storage, self.offset, self.length)
}
/// Returns an iterator that only iterates over the set bits.
pub fn true_idx_iter(&self) -> TrueIdxIter<'_> {
TrueIdxIter::new(self.len(), Some(self))
}
/// Returns the bits of this [`Bitmap`] as a [`AlignedBitmapSlice`].
pub fn aligned<T: BitChunk>(&self) -> AlignedBitmapSlice<'_, T> {
AlignedBitmapSlice::new(&self.storage, self.offset, self.length)
}
/// Returns the byte slice of this [`Bitmap`].
///
/// The returned tuple contains:
/// * `.1`: The byte slice, truncated to the start of the first bit. So the start of the slice
/// is within the first 8 bits.
/// * `.2`: The start offset in bits on a range `0 <= offsets < 8`.
/// * `.3`: The length in number of bits.
#[inline]
pub fn as_slice(&self) -> (&[u8], usize, usize) {
let start = self.offset / 8;
let len = (self.offset % 8 + self.length).saturating_add(7) / 8;
(
&self.storage[start..start + len],
self.offset % 8,
self.length,
)
}
/// Returns the number of set bits on this [`Bitmap`].
///
/// See `unset_bits` for details.
#[inline]
pub fn set_bits(&self) -> usize {
self.length - self.unset_bits()
}
/// Returns the number of set bits on this [`Bitmap`] if it is known.
///
/// See `lazy_unset_bits` for details.
#[inline]
pub fn lazy_set_bits(&self) -> Option<usize> {
Some(self.length - self.lazy_unset_bits()?)
}
/// Returns the number of unset bits on this [`Bitmap`].
///
/// Guaranteed to be `<= self.len()`.
///
/// # Implementation
///
/// This function counts the number of unset bits if it is not already
/// computed. Repeated calls use the cached bitcount.
pub fn unset_bits(&self) -> usize {
self.lazy_unset_bits().unwrap_or_else(|| {
let zeros = count_zeros(&self.storage, self.offset, self.length);
self.unset_bit_count_cache
.store(zeros as u64, Ordering::Relaxed);
zeros
})
}
/// Returns the number of unset bits on this [`Bitmap`] if it is known.
///
/// Guaranteed to be `<= self.len()`.
pub fn lazy_unset_bits(&self) -> Option<usize> {
let cache = self.unset_bit_count_cache.load(Ordering::Relaxed);
has_cached_unset_bit_count(cache).then_some(cache as usize)
}
/// Updates the count of the number of set bits on this [`Bitmap`].
///
/// # Safety
///
/// The number of set bits must be correct.
pub unsafe fn update_bit_count(&mut self, bits_set: usize) {
assert!(bits_set <= self.length);
let zeros = self.length - bits_set;
self.unset_bit_count_cache
.store(zeros as u64, Ordering::Relaxed);
}
/// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
/// # Panic
/// Panics iff `offset + length > self.length`, i.e. if the offset and `length`
/// exceeds the allocated capacity of `self`.
#[inline]
pub fn slice(&mut self, offset: usize, length: usize) {
assert!(offset + length <= self.length);
unsafe { self.slice_unchecked(offset, length) }
}
/// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
///
/// # Safety
/// The caller must ensure that `self.offset + offset + length <= self.len()`
#[inline]
pub unsafe fn slice_unchecked(&mut self, offset: usize, length: usize) {
// Fast path: no-op slice.
if offset == 0 && length == self.length {
return;
}
// Fast path: we have no nulls or are full-null.
let unset_bit_count_cache = self.unset_bit_count_cache.get_mut();
if *unset_bit_count_cache == 0 || *unset_bit_count_cache == self.length as u64 {
let new_count = if *unset_bit_count_cache > 0 {
length as u64
} else {
0
};
*unset_bit_count_cache = new_count;
self.offset += offset;
self.length = length;
return;
}
if has_cached_unset_bit_count(*unset_bit_count_cache) {
// If we keep all but a small portion of the array it is worth
// doing an eager re-count since we can reuse the old count via the
// inclusion-exclusion principle.
let small_portion = (self.length / 5).max(32);
if length + small_portion >= self.length {
// Subtract the null count of the chunks we slice off.
let slice_end = self.offset + offset + length;
let head_count = count_zeros(&self.storage, self.offset, offset);
let tail_count =
count_zeros(&self.storage, slice_end, self.length - length - offset);
let new_count = *unset_bit_count_cache - head_count as u64 - tail_count as u64;
*unset_bit_count_cache = new_count;
} else {
*unset_bit_count_cache = UNKNOWN_BIT_COUNT;
}
}
self.offset += offset;
self.length = length;
}
/// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
/// # Panic
/// Panics iff `offset + length > self.length`, i.e. if the offset and `length`
/// exceeds the allocated capacity of `self`.
#[inline]
#[must_use]
pub fn sliced(self, offset: usize, length: usize) -> Self {
assert!(offset + length <= self.length);
unsafe { self.sliced_unchecked(offset, length) }
}
/// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
///
/// # Safety
/// The caller must ensure that `self.offset + offset + length <= self.len()`
#[inline]
#[must_use]
pub unsafe fn sliced_unchecked(mut self, offset: usize, length: usize) -> Self {
self.slice_unchecked(offset, length);
self
}
/// Returns whether the bit at position `i` is set.
/// # Panics
/// Panics iff `i >= self.len()`.
#[inline]
pub fn get_bit(&self, i: usize) -> bool {
assert!(i < self.len());
unsafe { self.get_bit_unchecked(i) }
}
/// Unsafely returns whether the bit at position `i` is set.
///
/// # Safety
/// Unsound iff `i >= self.len()`.
#[inline]
pub unsafe fn get_bit_unchecked(&self, i: usize) -> bool {
debug_assert!(i < self.len());
get_bit_unchecked(&self.storage, self.offset + i)
}
/// Returns a pointer to the start of this [`Bitmap`] (ignores `offsets`)
/// This pointer is allocated iff `self.len() > 0`.
pub(crate) fn as_ptr(&self) -> *const u8 {
self.storage.deref().as_ptr()
}
/// Returns a pointer to the start of this [`Bitmap`] (ignores `offsets`)
/// This pointer is allocated iff `self.len() > 0`.
pub(crate) fn offset(&self) -> usize {
self.offset
}
/// Converts this [`Bitmap`] to [`MutableBitmap`], returning itself if the conversion
/// is not possible
///
/// This operation returns a [`MutableBitmap`] iff:
/// * this [`Bitmap`] is not an offsetted slice of another [`Bitmap`]
/// * this [`Bitmap`] has not been cloned (i.e. [`Arc`]`::get_mut` yields [`Some`])
/// * this [`Bitmap`] was not imported from the c data interface (FFI)
pub fn into_mut(mut self) -> Either<Self, MutableBitmap> {
match self.storage.try_into_vec() {
Ok(v) => Either::Right(MutableBitmap::from_vec(v, self.length)),
Err(storage) => {
self.storage = storage;
Either::Left(self)
},
}
}
/// Converts this [`Bitmap`] into a [`MutableBitmap`], cloning its internal
/// buffer if required (clone-on-write).
pub fn make_mut(self) -> MutableBitmap {
match self.into_mut() {
Either::Left(data) => {
if data.offset > 0 {
// re-align the bits (remove the offset)
let chunks = data.chunks::<u64>();
let remainder = chunks.remainder();
let vec = chunk_iter_to_vec(chunks.chain(std::iter::once(remainder)));
MutableBitmap::from_vec(vec, data.length)
} else {
MutableBitmap::from_vec(data.storage.as_ref().to_vec(), data.length)
}
},
Either::Right(data) => data,
}
}
/// Initializes an new [`Bitmap`] filled with unset values.
#[inline]
pub fn new_zeroed(length: usize) -> Self {
// We intentionally leak 1MiB of zeroed memory once so we don't have to
// refcount it.
const GLOBAL_ZERO_SIZE: usize = 1024 * 1024;
static GLOBAL_ZEROES: LazyLock<SharedStorage<u8>> =
LazyLock::new(|| SharedStorage::from_static(vec![0; GLOBAL_ZERO_SIZE].leak()));
let bytes_needed = length.div_ceil(8);
let storage = if bytes_needed <= GLOBAL_ZERO_SIZE {
GLOBAL_ZEROES.clone()
} else {
SharedStorage::from_vec(vec![0; bytes_needed])
};
Self {
storage,
offset: 0,
length,
unset_bit_count_cache: AtomicU64::new(length as u64),
}
}
/// Initializes an new [`Bitmap`] filled with the given value.
#[inline]
pub fn new_with_value(value: bool, length: usize) -> Self {
// Don't use `MutableBitmap::from_len_zeroed().into()`, it triggers a bitcount.
let bytes = if value {
vec![u8::MAX; length.saturating_add(7) / 8]
} else {
vec![0; length.saturating_add(7) / 8]
};
let unset_bits = if value { 0 } else { length };
unsafe {
Bitmap::from_inner_unchecked(
SharedStorage::from_vec(bytes),
0,
length,
Some(unset_bits),
)
}
}
/// Counts the nulls (unset bits) starting from `offset` bits and for `length` bits.
#[inline]
pub fn null_count_range(&self, offset: usize, length: usize) -> usize {
count_zeros(&self.storage, self.offset + offset, length)
}
/// Creates a new [`Bitmap`] from a slice and length.
/// # Panic
/// Panics iff `length <= bytes.len() * 8`
#[inline]
pub fn from_u8_slice<T: AsRef<[u8]>>(slice: T, length: usize) -> Self {
Bitmap::try_new(slice.as_ref().to_vec(), length).unwrap()
}
/// Alias for `Bitmap::try_new().unwrap()`
/// This function is `O(1)`
/// # Panic
/// This function panics iff `length > bytes.len() * 8`
#[inline]
pub fn from_u8_vec(vec: Vec<u8>, length: usize) -> Self {
Bitmap::try_new(vec, length).unwrap()
}
/// Returns whether the bit at position `i` is set.
#[inline]
pub fn get(&self, i: usize) -> Option<bool> {
if i < self.len() {
Some(unsafe { self.get_bit_unchecked(i) })
} else {
None
}
}
/// Creates a `[Bitmap]` from its internal representation.
/// This is the inverted from `[Bitmap::into_inner]`
///
/// # Safety
/// Callers must ensure all invariants of this struct are upheld.
pub unsafe fn from_inner_unchecked(
storage: SharedStorage<u8>,
offset: usize,
length: usize,
unset_bits: Option<usize>,
) -> Self {
debug_assert!(check(&storage[..], offset, length).is_ok());
let unset_bit_count_cache = if let Some(n) = unset_bits {
AtomicU64::new(n as u64)
} else {
AtomicU64::new(UNKNOWN_BIT_COUNT)
};
Self {
storage,
offset,
length,
unset_bit_count_cache,
}
}
/// Checks whether two [`Bitmap`]s have shared set bits.
///
/// This is an optimized version of `(self & other) != 0000..`.
pub fn intersects_with(&self, other: &Self) -> bool {
intersects_with(self, other)
}
/// Calculates the number of shared set bits between two [`Bitmap`]s.
pub fn num_intersections_with(&self, other: &Self) -> usize {
num_intersections_with(self, other)
}
/// Select between `truthy` and `falsy` based on `self`.
///
/// This essentially performs:
///
/// `out[i] = if self[i] { truthy[i] } else { falsy[i] }`
pub fn select(&self, truthy: &Self, falsy: &Self) -> Self {
super::bitmap_ops::select(self, truthy, falsy)
}
/// Select between `truthy` and constant `falsy` based on `self`.
///
/// This essentially performs:
///
/// `out[i] = if self[i] { truthy[i] } else { falsy }`
pub fn select_constant(&self, truthy: &Self, falsy: bool) -> Self {
super::bitmap_ops::select_constant(self, truthy, falsy)
}
/// Calculates the number of edges from `0 -> 1` and `1 -> 0`.
pub fn num_edges(&self) -> usize {
super::bitmap_ops::num_edges(self)
}
}
impl<P: AsRef<[bool]>> From<P> for Bitmap {
fn from(slice: P) -> Self {
Self::from_trusted_len_iter(slice.as_ref().iter().copied())
}
}
impl FromIterator<bool> for Bitmap {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = bool>,
{
MutableBitmap::from_iter(iter).into()
}
}
impl FromTrustedLenIterator<bool> for Bitmap {
fn from_iter_trusted_length<T: IntoIterator<Item = bool>>(iter: T) -> Self
where
T::IntoIter: TrustedLen,
{
MutableBitmap::from_trusted_len_iter(iter.into_iter()).into()
}
}
impl Bitmap {
/// Creates a new [`Bitmap`] from an iterator of booleans.
///
/// # Safety
/// The iterator must report an accurate length.
#[inline]
pub unsafe fn from_trusted_len_iter_unchecked<I: Iterator<Item = bool>>(iterator: I) -> Self {
MutableBitmap::from_trusted_len_iter_unchecked(iterator).into()
}
/// Creates a new [`Bitmap`] from an iterator of booleans.
#[inline]
pub fn from_trusted_len_iter<I: TrustedLen<Item = bool>>(iterator: I) -> Self {
MutableBitmap::from_trusted_len_iter(iterator).into()
}
/// Creates a new [`Bitmap`] from a fallible iterator of booleans.
#[inline]
pub fn try_from_trusted_len_iter<E, I: TrustedLen<Item = std::result::Result<bool, E>>>(
iterator: I,
) -> std::result::Result<Self, E> {
Ok(MutableBitmap::try_from_trusted_len_iter(iterator)?.into())
}
/// Creates a new [`Bitmap`] from a fallible iterator of booleans.
///
/// # Safety
/// The iterator must report an accurate length.
#[inline]
pub unsafe fn try_from_trusted_len_iter_unchecked<
E,
I: Iterator<Item = std::result::Result<bool, E>>,
>(
iterator: I,
) -> std::result::Result<Self, E> {
Ok(MutableBitmap::try_from_trusted_len_iter_unchecked(iterator)?.into())
}
}
impl<'a> IntoIterator for &'a Bitmap {
type Item = bool;
type IntoIter = BitmapIter<'a>;
fn into_iter(self) -> Self::IntoIter {
BitmapIter::<'a>::new(&self.storage, self.offset, self.length)
}
}
impl IntoIterator for Bitmap {
type Item = bool;
type IntoIter = IntoIter;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self)
}
}
impl Splitable for Bitmap {
#[inline(always)]
fn check_bound(&self, offset: usize) -> bool {
offset <= self.len()
}
unsafe fn _split_at_unchecked(&self, offset: usize) -> (Self, Self) {
if offset == 0 {
return (Self::new(), self.clone());
}
if offset == self.len() {
return (self.clone(), Self::new());
}
let ubcc = self.unset_bit_count_cache.load(Ordering::Relaxed);
let lhs_length = offset;
let rhs_length = self.length - offset;
let mut lhs_ubcc = UNKNOWN_BIT_COUNT;
let mut rhs_ubcc = UNKNOWN_BIT_COUNT;
if has_cached_unset_bit_count(ubcc) {
if ubcc == 0 {
lhs_ubcc = 0;
rhs_ubcc = 0;
} else if ubcc == self.length as u64 {
lhs_ubcc = offset as u64;
rhs_ubcc = (self.length - offset) as u64;
} else {
// If we keep all but a small portion of the array it is worth
// doing an eager re-count since we can reuse the old count via the
// inclusion-exclusion principle.
let small_portion = (self.length / 4).max(32);
if lhs_length <= rhs_length {
if rhs_length + small_portion >= self.length {
let count = count_zeros(&self.storage, self.offset, lhs_length) as u64;
lhs_ubcc = count;
rhs_ubcc = ubcc - count;
}
} else if lhs_length + small_portion >= self.length {
let count = count_zeros(&self.storage, self.offset + offset, rhs_length) as u64;
lhs_ubcc = ubcc - count;
rhs_ubcc = count;
}
}
}
debug_assert!(lhs_ubcc == UNKNOWN_BIT_COUNT || lhs_ubcc <= ubcc);
debug_assert!(rhs_ubcc == UNKNOWN_BIT_COUNT || rhs_ubcc <= ubcc);
(
Self {
storage: self.storage.clone(),
offset: self.offset,
length: lhs_length,
unset_bit_count_cache: AtomicU64::new(lhs_ubcc),
},
Self {
storage: self.storage.clone(),
offset: self.offset + offset,
length: rhs_length,
unset_bit_count_cache: AtomicU64::new(rhs_ubcc),
},
)
}
}