polars_arrow/array/primitive/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
use std::ops::Range;
use either::Either;
use super::{Array, Splitable};
use crate::array::iterator::NonNullValuesIter;
use crate::bitmap::utils::{BitmapIter, ZipValidity};
use crate::bitmap::Bitmap;
use crate::buffer::Buffer;
use crate::datatypes::*;
use crate::trusted_len::TrustedLen;
use crate::types::{days_ms, f16, i256, months_days_ns, NativeType};
mod ffi;
pub(super) mod fmt;
mod from_natural;
pub mod iterator;
mod mutable;
pub use mutable::*;
use polars_error::{polars_bail, PolarsResult};
use polars_utils::index::{Bounded, Indexable, NullCount};
use polars_utils::slice::SliceAble;
/// A [`PrimitiveArray`] is Arrow's semantically equivalent of an immutable `Vec<Option<T>>` where
/// T is [`NativeType`] (e.g. [`i32`]). It implements [`Array`].
///
/// One way to think about a [`PrimitiveArray`] is `(DataType, Arc<Vec<T>>, Option<Arc<Vec<u8>>>)`
/// where:
/// * the first item is the array's logical type
/// * the second is the immutable values
/// * the third is the immutable validity (whether a value is null or not as a bitmap).
///
/// The size of this struct is `O(1)`, as all data is stored behind an [`std::sync::Arc`].
/// # Example
/// ```
/// use polars_arrow::array::PrimitiveArray;
/// use polars_arrow::bitmap::Bitmap;
/// use polars_arrow::buffer::Buffer;
///
/// let array = PrimitiveArray::from([Some(1i32), None, Some(10)]);
/// assert_eq!(array.value(0), 1);
/// assert_eq!(array.iter().collect::<Vec<_>>(), vec![Some(&1i32), None, Some(&10)]);
/// assert_eq!(array.values_iter().copied().collect::<Vec<_>>(), vec![1, 0, 10]);
/// // the underlying representation
/// assert_eq!(array.values(), &Buffer::from(vec![1i32, 0, 10]));
/// assert_eq!(array.validity(), Some(&Bitmap::from([true, false, true])));
///
/// ```
#[derive(Clone)]
pub struct PrimitiveArray<T: NativeType> {
dtype: ArrowDataType,
values: Buffer<T>,
validity: Option<Bitmap>,
}
pub(super) fn check<T: NativeType>(
dtype: &ArrowDataType,
values: &[T],
validity_len: Option<usize>,
) -> PolarsResult<()> {
if validity_len.is_some_and(|len| len != values.len()) {
polars_bail!(ComputeError: "validity mask length must match the number of values")
}
if dtype.to_physical_type() != PhysicalType::Primitive(T::PRIMITIVE) {
polars_bail!(ComputeError: "PrimitiveArray can only be initialized with a DataType whose physical type is Primitive")
}
Ok(())
}
impl<T: NativeType> PrimitiveArray<T> {
/// The canonical method to create a [`PrimitiveArray`] out of its internal components.
/// # Implementation
/// This function is `O(1)`.
///
/// # Errors
/// This function errors iff:
/// * The validity is not `None` and its length is different from `values`'s length
/// * The `dtype`'s [`PhysicalType`] is not equal to [`PhysicalType::Primitive(T::PRIMITIVE)`]
pub fn try_new(
dtype: ArrowDataType,
values: Buffer<T>,
validity: Option<Bitmap>,
) -> PolarsResult<Self> {
check(&dtype, &values, validity.as_ref().map(|v| v.len()))?;
Ok(Self {
dtype,
values,
validity,
})
}
/// # Safety
/// Doesn't check invariants
pub unsafe fn new_unchecked(
dtype: ArrowDataType,
values: Buffer<T>,
validity: Option<Bitmap>,
) -> Self {
if cfg!(debug_assertions) {
check(&dtype, &values, validity.as_ref().map(|v| v.len())).unwrap();
}
Self {
dtype,
values,
validity,
}
}
/// Returns a new [`PrimitiveArray`] with a different logical type.
///
/// This function is useful to assign a different [`ArrowDataType`] to the array.
/// Used to change the arrays' logical type (see example).
/// # Example
/// ```
/// use polars_arrow::array::Int32Array;
/// use polars_arrow::datatypes::ArrowDataType;
///
/// let array = Int32Array::from(&[Some(1), None, Some(2)]).to(ArrowDataType::Date32);
/// assert_eq!(
/// format!("{:?}", array),
/// "Date32[1970-01-02, None, 1970-01-03]"
/// );
/// ```
/// # Panics
/// Panics iff the `dtype`'s [`PhysicalType`] is not equal to [`PhysicalType::Primitive(T::PRIMITIVE)`]
#[inline]
#[must_use]
pub fn to(self, dtype: ArrowDataType) -> Self {
check(
&dtype,
&self.values,
self.validity.as_ref().map(|v| v.len()),
)
.unwrap();
Self {
dtype,
values: self.values,
validity: self.validity,
}
}
/// Creates a (non-null) [`PrimitiveArray`] from a vector of values.
/// This function is `O(1)`.
/// # Examples
/// ```
/// use polars_arrow::array::PrimitiveArray;
///
/// let array = PrimitiveArray::from_vec(vec![1, 2, 3]);
/// assert_eq!(format!("{:?}", array), "Int32[1, 2, 3]");
/// ```
pub fn from_vec(values: Vec<T>) -> Self {
Self::new(T::PRIMITIVE.into(), values.into(), None)
}
/// Returns an iterator over the values and validity, `Option<&T>`.
#[inline]
pub fn iter(&self) -> ZipValidity<&T, std::slice::Iter<T>, BitmapIter> {
ZipValidity::new_with_validity(self.values().iter(), self.validity())
}
/// Returns an iterator of the values, `&T`, ignoring the arrays' validity.
#[inline]
pub fn values_iter(&self) -> std::slice::Iter<T> {
self.values().iter()
}
/// Returns an iterator of the non-null values `T`.
#[inline]
pub fn non_null_values_iter(&self) -> NonNullValuesIter<'_, [T]> {
NonNullValuesIter::new(self.values(), self.validity())
}
/// Returns the length of this array
#[inline]
pub fn len(&self) -> usize {
self.values.len()
}
/// The values [`Buffer`].
/// Values on null slots are undetermined (they can be anything).
#[inline]
pub fn values(&self) -> &Buffer<T> {
&self.values
}
/// Returns the optional validity.
#[inline]
pub fn validity(&self) -> Option<&Bitmap> {
self.validity.as_ref()
}
/// Returns the arrays' [`ArrowDataType`].
#[inline]
pub fn dtype(&self) -> &ArrowDataType {
&self.dtype
}
/// Returns the value at slot `i`.
///
/// Equivalent to `self.values()[i]`. The value of a null slot is undetermined (it can be anything).
/// # Panic
/// This function panics iff `i >= self.len`.
#[inline]
pub fn value(&self, i: usize) -> T {
self.values[i]
}
/// Returns the value at index `i`.
/// The value on null slots is undetermined (it can be anything).
///
/// # Safety
/// Caller must be sure that `i < self.len()`
#[inline]
pub unsafe fn value_unchecked(&self, i: usize) -> T {
*self.values.get_unchecked(i)
}
// /// Returns the element at index `i` or `None` if it is null
// /// # Panics
// /// iff `i >= self.len()`
// #[inline]
// pub fn get(&self, i: usize) -> Option<T> {
// if !self.is_null(i) {
// // soundness: Array::is_null panics if i >= self.len
// unsafe { Some(self.value_unchecked(i)) }
// } else {
// None
// }
// }
/// Slices this [`PrimitiveArray`] by an offset and length.
/// # Implementation
/// This operation is `O(1)`.
#[inline]
pub fn slice(&mut self, offset: usize, length: usize) {
assert!(
offset + length <= self.len(),
"offset + length may not exceed length of array"
);
unsafe { self.slice_unchecked(offset, length) }
}
/// Slices this [`PrimitiveArray`] by an offset and length.
/// # Implementation
/// This operation is `O(1)`.
///
/// # Safety
/// The caller must ensure that `offset + length <= self.len()`.
#[inline]
pub unsafe fn slice_unchecked(&mut self, offset: usize, length: usize) {
self.validity = self
.validity
.take()
.map(|bitmap| bitmap.sliced_unchecked(offset, length))
.filter(|bitmap| bitmap.unset_bits() > 0);
self.values.slice_unchecked(offset, length);
}
impl_sliced!();
impl_mut_validity!();
impl_into_array!();
/// Returns this [`PrimitiveArray`] with new values.
/// # Panics
/// This function panics iff `values.len() != self.len()`.
#[must_use]
pub fn with_values(mut self, values: Buffer<T>) -> Self {
self.set_values(values);
self
}
/// Update the values of this [`PrimitiveArray`].
/// # Panics
/// This function panics iff `values.len() != self.len()`.
pub fn set_values(&mut self, values: Buffer<T>) {
assert_eq!(
values.len(),
self.len(),
"values' length must be equal to this arrays' length"
);
self.values = values;
}
/// Applies a function `f` to the validity of this array.
///
/// This is an API to leverage clone-on-write
/// # Panics
/// This function panics if the function `f` modifies the length of the [`Bitmap`].
pub fn apply_validity<F: FnOnce(Bitmap) -> Bitmap>(&mut self, f: F) {
if let Some(validity) = std::mem::take(&mut self.validity) {
self.set_validity(Some(f(validity)))
}
}
/// Returns an option of a mutable reference to the values of this [`PrimitiveArray`].
pub fn get_mut_values(&mut self) -> Option<&mut [T]> {
self.values.get_mut_slice()
}
/// Returns its internal representation
#[must_use]
pub fn into_inner(self) -> (ArrowDataType, Buffer<T>, Option<Bitmap>) {
let Self {
dtype,
values,
validity,
} = self;
(dtype, values, validity)
}
/// Creates a [`PrimitiveArray`] from its internal representation.
/// This is the inverted from [`PrimitiveArray::into_inner`]
pub fn from_inner(
dtype: ArrowDataType,
values: Buffer<T>,
validity: Option<Bitmap>,
) -> PolarsResult<Self> {
check(&dtype, &values, validity.as_ref().map(|v| v.len()))?;
Ok(unsafe { Self::from_inner_unchecked(dtype, values, validity) })
}
/// Creates a [`PrimitiveArray`] from its internal representation.
/// This is the inverted from [`PrimitiveArray::into_inner`]
///
/// # Safety
/// Callers must ensure all invariants of this struct are upheld.
pub unsafe fn from_inner_unchecked(
dtype: ArrowDataType,
values: Buffer<T>,
validity: Option<Bitmap>,
) -> Self {
Self {
dtype,
values,
validity,
}
}
/// Try to convert this [`PrimitiveArray`] to a [`MutablePrimitiveArray`] via copy-on-write semantics.
///
/// A [`PrimitiveArray`] is backed by a [`Buffer`] and [`Bitmap`] which are essentially `Arc<Vec<_>>`.
/// This function returns a [`MutablePrimitiveArray`] (via [`std::sync::Arc::get_mut`]) iff both values
/// and validity have not been cloned / are unique references to their underlying vectors.
///
/// This function is primarily used to reuse memory regions.
#[must_use]
pub fn into_mut(self) -> Either<Self, MutablePrimitiveArray<T>> {
use Either::*;
if let Some(bitmap) = self.validity {
match bitmap.into_mut() {
Left(bitmap) => Left(PrimitiveArray::new(self.dtype, self.values, Some(bitmap))),
Right(mutable_bitmap) => match self.values.into_mut() {
Right(values) => Right(
MutablePrimitiveArray::try_new(self.dtype, values, Some(mutable_bitmap))
.unwrap(),
),
Left(values) => Left(PrimitiveArray::new(
self.dtype,
values,
Some(mutable_bitmap.into()),
)),
},
}
} else {
match self.values.into_mut() {
Right(values) => {
Right(MutablePrimitiveArray::try_new(self.dtype, values, None).unwrap())
},
Left(values) => Left(PrimitiveArray::new(self.dtype, values, None)),
}
}
}
/// Returns a new empty (zero-length) [`PrimitiveArray`].
pub fn new_empty(dtype: ArrowDataType) -> Self {
Self::new(dtype, Buffer::new(), None)
}
/// Returns a new [`PrimitiveArray`] where all slots are null / `None`.
#[inline]
pub fn new_null(dtype: ArrowDataType, length: usize) -> Self {
Self::new(
dtype,
vec![T::default(); length].into(),
Some(Bitmap::new_zeroed(length)),
)
}
/// Creates a (non-null) [`PrimitiveArray`] from an iterator of values.
/// # Implementation
/// This does not assume that the iterator has a known length.
pub fn from_values<I: IntoIterator<Item = T>>(iter: I) -> Self {
Self::new(T::PRIMITIVE.into(), Vec::<T>::from_iter(iter).into(), None)
}
/// Creates a (non-null) [`PrimitiveArray`] from a slice of values.
/// # Implementation
/// This is essentially a memcopy and is thus `O(N)`
pub fn from_slice<P: AsRef<[T]>>(slice: P) -> Self {
Self::new(
T::PRIMITIVE.into(),
Vec::<T>::from(slice.as_ref()).into(),
None,
)
}
/// Creates a (non-null) [`PrimitiveArray`] from a [`TrustedLen`] of values.
/// # Implementation
/// This does not assume that the iterator has a known length.
pub fn from_trusted_len_values_iter<I: TrustedLen<Item = T>>(iter: I) -> Self {
MutablePrimitiveArray::<T>::from_trusted_len_values_iter(iter).into()
}
/// Creates a new [`PrimitiveArray`] from an iterator over values
///
/// # Safety
/// The iterator must be [`TrustedLen`](https://doc.rust-lang.org/std/iter/trait.TrustedLen.html).
/// I.e. that `size_hint().1` correctly reports its length.
pub unsafe fn from_trusted_len_values_iter_unchecked<I: Iterator<Item = T>>(iter: I) -> Self {
MutablePrimitiveArray::<T>::from_trusted_len_values_iter_unchecked(iter).into()
}
/// Creates a [`PrimitiveArray`] from a [`TrustedLen`] of optional values.
pub fn from_trusted_len_iter<I: TrustedLen<Item = Option<T>>>(iter: I) -> Self {
MutablePrimitiveArray::<T>::from_trusted_len_iter(iter).into()
}
/// Creates a [`PrimitiveArray`] from an iterator of optional values.
///
/// # Safety
/// The iterator must be [`TrustedLen`](https://doc.rust-lang.org/std/iter/trait.TrustedLen.html).
/// I.e. that `size_hint().1` correctly reports its length.
pub unsafe fn from_trusted_len_iter_unchecked<I: Iterator<Item = Option<T>>>(iter: I) -> Self {
MutablePrimitiveArray::<T>::from_trusted_len_iter_unchecked(iter).into()
}
/// Alias for `Self::try_new(..).unwrap()`.
/// # Panics
/// This function errors iff:
/// * The validity is not `None` and its length is different from `values`'s length
/// * The `dtype`'s [`PhysicalType`] is not equal to [`PhysicalType::Primitive`].
pub fn new(dtype: ArrowDataType, values: Buffer<T>, validity: Option<Bitmap>) -> Self {
Self::try_new(dtype, values, validity).unwrap()
}
/// Transmute this PrimitiveArray into another PrimitiveArray.
///
/// T and U must have the same size and alignment.
pub fn transmute<U: NativeType>(self) -> PrimitiveArray<U> {
let PrimitiveArray {
values, validity, ..
} = self;
// SAFETY: this is fine, we checked size and alignment, and NativeType
// is always Pod.
assert_eq!(size_of::<T>(), size_of::<U>());
assert_eq!(align_of::<T>(), align_of::<U>());
let new_values = unsafe { std::mem::transmute::<Buffer<T>, Buffer<U>>(values) };
PrimitiveArray::new(U::PRIMITIVE.into(), new_values, validity)
}
/// Fills this entire array with the given value, leaving the validity mask intact.
///
/// Reuses the memory of the PrimitiveArray if possible.
pub fn fill_with(mut self, value: T) -> Self {
if let Some(values) = self.get_mut_values() {
for x in values.iter_mut() {
*x = value;
}
self
} else {
let values = vec![value; self.len()];
Self::new(T::PRIMITIVE.into(), values.into(), self.validity)
}
}
}
impl<T: NativeType> Array for PrimitiveArray<T> {
impl_common_array!();
fn validity(&self) -> Option<&Bitmap> {
self.validity.as_ref()
}
#[inline]
fn with_validity(&self, validity: Option<Bitmap>) -> Box<dyn Array> {
Box::new(self.clone().with_validity(validity))
}
}
impl<T: NativeType> Splitable for PrimitiveArray<T> {
#[inline(always)]
fn check_bound(&self, offset: usize) -> bool {
offset <= self.len()
}
unsafe fn _split_at_unchecked(&self, offset: usize) -> (Self, Self) {
let (lhs_values, rhs_values) = unsafe { self.values.split_at_unchecked(offset) };
let (lhs_validity, rhs_validity) = unsafe { self.validity.split_at_unchecked(offset) };
(
Self {
dtype: self.dtype.clone(),
values: lhs_values,
validity: lhs_validity,
},
Self {
dtype: self.dtype.clone(),
values: rhs_values,
validity: rhs_validity,
},
)
}
}
impl<T: NativeType> SliceAble for PrimitiveArray<T> {
unsafe fn slice_unchecked(&self, range: Range<usize>) -> Self {
self.clone().sliced_unchecked(range.start, range.len())
}
fn slice(&self, range: Range<usize>) -> Self {
self.clone().sliced(range.start, range.len())
}
}
impl<T: NativeType> Indexable for PrimitiveArray<T> {
type Item = Option<T>;
fn get(&self, i: usize) -> Self::Item {
if !self.is_null(i) {
// soundness: Array::is_null panics if i >= self.len
unsafe { Some(self.value_unchecked(i)) }
} else {
None
}
}
unsafe fn get_unchecked(&self, i: usize) -> Self::Item {
if !self.is_null_unchecked(i) {
Some(self.value_unchecked(i))
} else {
None
}
}
}
/// A type definition [`PrimitiveArray`] for `i8`
pub type Int8Array = PrimitiveArray<i8>;
/// A type definition [`PrimitiveArray`] for `i16`
pub type Int16Array = PrimitiveArray<i16>;
/// A type definition [`PrimitiveArray`] for `i32`
pub type Int32Array = PrimitiveArray<i32>;
/// A type definition [`PrimitiveArray`] for `i64`
pub type Int64Array = PrimitiveArray<i64>;
/// A type definition [`PrimitiveArray`] for `i128`
pub type Int128Array = PrimitiveArray<i128>;
/// A type definition [`PrimitiveArray`] for `i256`
pub type Int256Array = PrimitiveArray<i256>;
/// A type definition [`PrimitiveArray`] for [`days_ms`]
pub type DaysMsArray = PrimitiveArray<days_ms>;
/// A type definition [`PrimitiveArray`] for [`months_days_ns`]
pub type MonthsDaysNsArray = PrimitiveArray<months_days_ns>;
/// A type definition [`PrimitiveArray`] for `f16`
pub type Float16Array = PrimitiveArray<f16>;
/// A type definition [`PrimitiveArray`] for `f32`
pub type Float32Array = PrimitiveArray<f32>;
/// A type definition [`PrimitiveArray`] for `f64`
pub type Float64Array = PrimitiveArray<f64>;
/// A type definition [`PrimitiveArray`] for `u8`
pub type UInt8Array = PrimitiveArray<u8>;
/// A type definition [`PrimitiveArray`] for `u16`
pub type UInt16Array = PrimitiveArray<u16>;
/// A type definition [`PrimitiveArray`] for `u32`
pub type UInt32Array = PrimitiveArray<u32>;
/// A type definition [`PrimitiveArray`] for `u64`
pub type UInt64Array = PrimitiveArray<u64>;
/// A type definition [`MutablePrimitiveArray`] for `i8`
pub type Int8Vec = MutablePrimitiveArray<i8>;
/// A type definition [`MutablePrimitiveArray`] for `i16`
pub type Int16Vec = MutablePrimitiveArray<i16>;
/// A type definition [`MutablePrimitiveArray`] for `i32`
pub type Int32Vec = MutablePrimitiveArray<i32>;
/// A type definition [`MutablePrimitiveArray`] for `i64`
pub type Int64Vec = MutablePrimitiveArray<i64>;
/// A type definition [`MutablePrimitiveArray`] for `i128`
pub type Int128Vec = MutablePrimitiveArray<i128>;
/// A type definition [`MutablePrimitiveArray`] for `i256`
pub type Int256Vec = MutablePrimitiveArray<i256>;
/// A type definition [`MutablePrimitiveArray`] for [`days_ms`]
pub type DaysMsVec = MutablePrimitiveArray<days_ms>;
/// A type definition [`MutablePrimitiveArray`] for [`months_days_ns`]
pub type MonthsDaysNsVec = MutablePrimitiveArray<months_days_ns>;
/// A type definition [`MutablePrimitiveArray`] for `f16`
pub type Float16Vec = MutablePrimitiveArray<f16>;
/// A type definition [`MutablePrimitiveArray`] for `f32`
pub type Float32Vec = MutablePrimitiveArray<f32>;
/// A type definition [`MutablePrimitiveArray`] for `f64`
pub type Float64Vec = MutablePrimitiveArray<f64>;
/// A type definition [`MutablePrimitiveArray`] for `u8`
pub type UInt8Vec = MutablePrimitiveArray<u8>;
/// A type definition [`MutablePrimitiveArray`] for `u16`
pub type UInt16Vec = MutablePrimitiveArray<u16>;
/// A type definition [`MutablePrimitiveArray`] for `u32`
pub type UInt32Vec = MutablePrimitiveArray<u32>;
/// A type definition [`MutablePrimitiveArray`] for `u64`
pub type UInt64Vec = MutablePrimitiveArray<u64>;
impl<T: NativeType> Default for PrimitiveArray<T> {
fn default() -> Self {
PrimitiveArray::new(T::PRIMITIVE.into(), Default::default(), None)
}
}
impl<T: NativeType> Bounded for PrimitiveArray<T> {
fn len(&self) -> usize {
self.values.len()
}
}
impl<T: NativeType> NullCount for PrimitiveArray<T> {
fn null_count(&self) -> usize {
<Self as Array>::null_count(self)
}
}