polars_arrow/array/fixed_size_binary/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
use super::{Array, Splitable};
use crate::bitmap::Bitmap;
use crate::buffer::Buffer;
use crate::datatypes::ArrowDataType;

mod ffi;
pub(super) mod fmt;
mod iterator;
mod mutable;
pub use mutable::*;
use polars_error::{polars_bail, polars_ensure, PolarsResult};

/// The Arrow's equivalent to an immutable `Vec<Option<[u8; size]>>`.
/// Cloning and slicing this struct is `O(1)`.
#[derive(Clone)]
pub struct FixedSizeBinaryArray {
    size: usize, // this is redundant with `dtype`, but useful to not have to deconstruct the dtype.
    dtype: ArrowDataType,
    values: Buffer<u8>,
    validity: Option<Bitmap>,
}

impl FixedSizeBinaryArray {
    /// Creates a new [`FixedSizeBinaryArray`].
    ///
    /// # Errors
    /// This function returns an error iff:
    /// * The `dtype`'s physical type is not [`crate::datatypes::PhysicalType::FixedSizeBinary`]
    /// * The length of `values` is not a multiple of `size` in `dtype`
    /// * the validity's length is not equal to `values.len() / size`.
    pub fn try_new(
        dtype: ArrowDataType,
        values: Buffer<u8>,
        validity: Option<Bitmap>,
    ) -> PolarsResult<Self> {
        let size = Self::maybe_get_size(&dtype)?;

        if values.len() % size != 0 {
            polars_bail!(ComputeError:
                "values (of len {}) must be a multiple of size ({}) in FixedSizeBinaryArray.",
                values.len(),
                size
            )
        }
        let len = values.len() / size;

        if validity
            .as_ref()
            .map_or(false, |validity| validity.len() != len)
        {
            polars_bail!(ComputeError: "validity mask length must be equal to the number of values divided by size")
        }

        Ok(Self {
            size,
            dtype,
            values,
            validity,
        })
    }

    /// Creates a new [`FixedSizeBinaryArray`].
    /// # Panics
    /// This function panics iff:
    /// * The `dtype`'s physical type is not [`crate::datatypes::PhysicalType::FixedSizeBinary`]
    /// * The length of `values` is not a multiple of `size` in `dtype`
    /// * the validity's length is not equal to `values.len() / size`.
    pub fn new(dtype: ArrowDataType, values: Buffer<u8>, validity: Option<Bitmap>) -> Self {
        Self::try_new(dtype, values, validity).unwrap()
    }

    /// Returns a new empty [`FixedSizeBinaryArray`].
    pub fn new_empty(dtype: ArrowDataType) -> Self {
        Self::new(dtype, Buffer::new(), None)
    }

    /// Returns a new null [`FixedSizeBinaryArray`].
    pub fn new_null(dtype: ArrowDataType, length: usize) -> Self {
        let size = Self::maybe_get_size(&dtype).unwrap();
        Self::new(
            dtype,
            vec![0u8; length * size].into(),
            Some(Bitmap::new_zeroed(length)),
        )
    }
}

// must use
impl FixedSizeBinaryArray {
    /// Slices this [`FixedSizeBinaryArray`].
    /// # Implementation
    /// This operation is `O(1)`.
    /// # Panics
    /// panics iff `offset + length > self.len()`
    pub fn slice(&mut self, offset: usize, length: usize) {
        assert!(
            offset + length <= self.len(),
            "the offset of the new Buffer cannot exceed the existing length"
        );
        unsafe { self.slice_unchecked(offset, length) }
    }

    /// Slices this [`FixedSizeBinaryArray`].
    /// # Implementation
    /// This operation is `O(1)`.
    ///
    /// # Safety
    /// The caller must ensure that `offset + length <= self.len()`.
    pub unsafe fn slice_unchecked(&mut self, offset: usize, length: usize) {
        self.validity = self
            .validity
            .take()
            .map(|bitmap| bitmap.sliced_unchecked(offset, length))
            .filter(|bitmap| bitmap.unset_bits() > 0);
        self.values
            .slice_unchecked(offset * self.size, length * self.size);
    }

    impl_sliced!();
    impl_mut_validity!();
    impl_into_array!();
}

// accessors
impl FixedSizeBinaryArray {
    /// Returns the length of this array
    #[inline]
    pub fn len(&self) -> usize {
        self.values.len() / self.size
    }

    /// The optional validity.
    #[inline]
    pub fn validity(&self) -> Option<&Bitmap> {
        self.validity.as_ref()
    }

    /// Returns the values allocated on this [`FixedSizeBinaryArray`].
    pub fn values(&self) -> &Buffer<u8> {
        &self.values
    }

    /// Returns value at position `i`.
    /// # Panic
    /// Panics iff `i >= self.len()`.
    #[inline]
    pub fn value(&self, i: usize) -> &[u8] {
        assert!(i < self.len());
        unsafe { self.value_unchecked(i) }
    }

    /// Returns the element at index `i` as &str
    ///
    /// # Safety
    /// Assumes that the `i < self.len`.
    #[inline]
    pub unsafe fn value_unchecked(&self, i: usize) -> &[u8] {
        // soundness: invariant of the function.
        self.values
            .get_unchecked(i * self.size..(i + 1) * self.size)
    }

    /// Returns the element at index `i` or `None` if it is null
    /// # Panics
    /// iff `i >= self.len()`
    #[inline]
    pub fn get(&self, i: usize) -> Option<&[u8]> {
        if !self.is_null(i) {
            // soundness: Array::is_null panics if i >= self.len
            unsafe { Some(self.value_unchecked(i)) }
        } else {
            None
        }
    }

    /// Returns a new [`FixedSizeBinaryArray`] with a different logical type.
    /// This is `O(1)`.
    /// # Panics
    /// Panics iff the dtype is not supported for the physical type.
    #[inline]
    pub fn to(self, dtype: ArrowDataType) -> Self {
        match (dtype.to_logical_type(), self.dtype().to_logical_type()) {
            (ArrowDataType::FixedSizeBinary(size_a), ArrowDataType::FixedSizeBinary(size_b))
                if size_a == size_b => {},
            _ => panic!("Wrong DataType"),
        }

        Self {
            size: self.size,
            dtype,
            values: self.values,
            validity: self.validity,
        }
    }

    /// Returns the size
    pub fn size(&self) -> usize {
        self.size
    }
}

impl FixedSizeBinaryArray {
    pub(crate) fn maybe_get_size(dtype: &ArrowDataType) -> PolarsResult<usize> {
        match dtype.to_logical_type() {
            ArrowDataType::FixedSizeBinary(size) => {
                polars_ensure!(*size != 0, ComputeError: "FixedSizeBinaryArray expects a positive size");
                Ok(*size)
            },
            other => {
                polars_bail!(ComputeError: "FixedSizeBinaryArray expects DataType::FixedSizeBinary. found {other:?}")
            },
        }
    }

    pub fn get_size(dtype: &ArrowDataType) -> usize {
        Self::maybe_get_size(dtype).unwrap()
    }
}

impl Array for FixedSizeBinaryArray {
    impl_common_array!();

    fn validity(&self) -> Option<&Bitmap> {
        self.validity.as_ref()
    }

    #[inline]
    fn with_validity(&self, validity: Option<Bitmap>) -> Box<dyn Array> {
        Box::new(self.clone().with_validity(validity))
    }
}

impl Splitable for FixedSizeBinaryArray {
    fn check_bound(&self, offset: usize) -> bool {
        offset < self.len()
    }

    unsafe fn _split_at_unchecked(&self, offset: usize) -> (Self, Self) {
        let (lhs_values, rhs_values) = unsafe { self.values.split_at_unchecked(offset) };
        let (lhs_validity, rhs_validity) = unsafe { self.validity.split_at_unchecked(offset) };

        let size = self.size;

        (
            Self {
                dtype: self.dtype.clone(),
                values: lhs_values,
                validity: lhs_validity,
                size,
            },
            Self {
                dtype: self.dtype.clone(),
                values: rhs_values,
                validity: rhs_validity,
                size,
            },
        )
    }
}

impl FixedSizeBinaryArray {
    /// Creates a [`FixedSizeBinaryArray`] from an fallible iterator of optional `[u8]`.
    pub fn try_from_iter<P: AsRef<[u8]>, I: IntoIterator<Item = Option<P>>>(
        iter: I,
        size: usize,
    ) -> PolarsResult<Self> {
        MutableFixedSizeBinaryArray::try_from_iter(iter, size).map(|x| x.into())
    }

    /// Creates a [`FixedSizeBinaryArray`] from an iterator of optional `[u8]`.
    pub fn from_iter<P: AsRef<[u8]>, I: IntoIterator<Item = Option<P>>>(
        iter: I,
        size: usize,
    ) -> Self {
        MutableFixedSizeBinaryArray::try_from_iter(iter, size)
            .unwrap()
            .into()
    }

    /// Creates a [`FixedSizeBinaryArray`] from a slice of arrays of bytes
    pub fn from_slice<const N: usize, P: AsRef<[[u8; N]]>>(a: P) -> Self {
        let values = a.as_ref().iter().flatten().copied().collect::<Vec<_>>();
        Self::new(ArrowDataType::FixedSizeBinary(N), values.into(), None)
    }

    /// Creates a new [`FixedSizeBinaryArray`] from a slice of optional `[u8]`.
    // Note: this can't be `impl From` because Rust does not allow double `AsRef` on it.
    pub fn from<const N: usize, P: AsRef<[Option<[u8; N]>]>>(slice: P) -> Self {
        MutableFixedSizeBinaryArray::from(slice).into()
    }
}