polars_arrow/array/fixed_size_list/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
use super::{new_empty_array, new_null_array, Array, ArrayRef, Splitable};
use crate::bitmap::Bitmap;
use crate::datatypes::{ArrowDataType, Field};

mod ffi;
pub(super) mod fmt;
mod iterator;

mod mutable;
pub use mutable::*;
use polars_error::{polars_bail, polars_ensure, PolarsResult};
use polars_utils::format_tuple;
use polars_utils::pl_str::PlSmallStr;

use crate::datatypes::reshape::{Dimension, ReshapeDimension};

/// The Arrow's equivalent to an immutable `Vec<Option<[T; size]>>` where `T` is an Arrow type.
/// Cloning and slicing this struct is `O(1)`.
#[derive(Clone)]
pub struct FixedSizeListArray {
    size: usize, // this is redundant with `dtype`, but useful to not have to deconstruct the dtype.
    length: usize, // invariant: this is values.len() / size if size > 0
    dtype: ArrowDataType,
    values: Box<dyn Array>,
    validity: Option<Bitmap>,
}

impl FixedSizeListArray {
    /// Creates a new [`FixedSizeListArray`].
    ///
    /// # Errors
    /// This function returns an error iff:
    /// * The `dtype`'s physical type is not [`crate::datatypes::PhysicalType::FixedSizeList`]
    /// * The `dtype`'s inner field's data type is not equal to `values.dtype`.
    /// * The length of `values` is not a multiple of `size` in `dtype`
    /// * the validity's length is not equal to `values.len() / size`.
    pub fn try_new(
        dtype: ArrowDataType,
        length: usize,
        values: Box<dyn Array>,
        validity: Option<Bitmap>,
    ) -> PolarsResult<Self> {
        let (child, size) = Self::try_child_and_size(&dtype)?;

        let child_dtype = &child.dtype;
        let values_dtype = values.dtype();
        if child_dtype != values_dtype {
            polars_bail!(ComputeError: "FixedSizeListArray's child's DataType must match. However, the expected DataType is {child_dtype:?} while it got {values_dtype:?}.")
        }

        polars_ensure!(size == 0 || values.len() % size == 0, ComputeError:
            "values (of len {}) must be a multiple of size ({}) in FixedSizeListArray.",
            values.len(),
            size
        );

        polars_ensure!(size == 0 || values.len() / size == length, ComputeError:
            "length of values ({}) is not equal to given length ({}) in FixedSizeListArray({size}).",
            values.len() / size,
            length,
        );
        polars_ensure!(size != 0 || values.len() == 0, ComputeError:
            "zero width FixedSizeListArray has values (length = {}).",
            values.len(),
        );

        if validity
            .as_ref()
            .is_some_and(|validity| validity.len() != length)
        {
            polars_bail!(ComputeError: "validity mask length must be equal to the number of values divided by size")
        }

        Ok(Self {
            size,
            length,
            dtype,
            values,
            validity,
        })
    }

    #[inline]
    fn has_invariants(&self) -> bool {
        let has_valid_length = (self.size == 0 && self.values().len() == 0)
            || (self.size > 0
                && self.values().len() % self.size() == 0
                && self.values().len() / self.size() == self.length);
        let has_valid_validity = self
            .validity
            .as_ref()
            .map_or(true, |v| v.len() == self.length);

        has_valid_length && has_valid_validity
    }

    /// Alias to `Self::try_new(...).unwrap()`
    #[track_caller]
    pub fn new(
        dtype: ArrowDataType,
        length: usize,
        values: Box<dyn Array>,
        validity: Option<Bitmap>,
    ) -> Self {
        Self::try_new(dtype, length, values, validity).unwrap()
    }

    /// Returns the size (number of elements per slot) of this [`FixedSizeListArray`].
    pub const fn size(&self) -> usize {
        self.size
    }

    /// Returns a new empty [`FixedSizeListArray`].
    pub fn new_empty(dtype: ArrowDataType) -> Self {
        let values = new_empty_array(Self::get_child_and_size(&dtype).0.dtype().clone());
        Self::new(dtype, 0, values, None)
    }

    /// Returns a new null [`FixedSizeListArray`].
    pub fn new_null(dtype: ArrowDataType, length: usize) -> Self {
        let (field, size) = Self::get_child_and_size(&dtype);

        let values = new_null_array(field.dtype().clone(), length * size);
        Self::new(dtype, length, values, Some(Bitmap::new_zeroed(length)))
    }

    pub fn from_shape(
        leaf_array: ArrayRef,
        dimensions: &[ReshapeDimension],
    ) -> PolarsResult<ArrayRef> {
        polars_ensure!(
            !dimensions.is_empty(),
            InvalidOperation: "at least one dimension must be specified"
        );
        let size = leaf_array.len();

        let mut total_dim_size = 1;
        let mut num_infers = 0;
        for &dim in dimensions {
            match dim {
                ReshapeDimension::Infer => num_infers += 1,
                ReshapeDimension::Specified(dim) => total_dim_size *= dim.get() as usize,
            }
        }

        polars_ensure!(num_infers <= 1, InvalidOperation: "can only specify one inferred dimension");

        if size == 0 {
            polars_ensure!(
                num_infers > 0 || total_dim_size == 0,
                InvalidOperation: "cannot reshape empty array into shape without zero dimension: {}",
                format_tuple!(dimensions),
            );

            let mut prev_arrow_dtype = leaf_array.dtype().clone();
            let mut prev_array = leaf_array;

            // @NOTE: We need to collect the iterator here because it is lazily processed.
            let mut current_length = dimensions[0].get_or_infer(0);
            let len_iter = dimensions[1..]
                .iter()
                .map(|d| {
                    let length = current_length as usize;
                    current_length *= d.get_or_infer(0);
                    length
                })
                .collect::<Vec<_>>();

            // We pop the outer dimension as that is the height of the series.
            for (dim, length) in dimensions[1..].iter().zip(len_iter).rev() {
                // Infer dimension if needed
                let dim = dim.get_or_infer(0);
                prev_arrow_dtype = prev_arrow_dtype.to_fixed_size_list(dim as usize, true);

                prev_array =
                    FixedSizeListArray::new(prev_arrow_dtype.clone(), length, prev_array, None)
                        .boxed();
            }

            return Ok(prev_array);
        }

        polars_ensure!(
            total_dim_size > 0,
            InvalidOperation: "cannot reshape non-empty array into shape containing a zero dimension: {}",
            format_tuple!(dimensions)
        );

        polars_ensure!(
            size % total_dim_size == 0,
            InvalidOperation: "cannot reshape array of size {} into shape {}", size, format_tuple!(dimensions)
        );

        let mut prev_arrow_dtype = leaf_array.dtype().clone();
        let mut prev_array = leaf_array;

        // We pop the outer dimension as that is the height of the series.
        for dim in dimensions[1..].iter().rev() {
            // Infer dimension if needed
            let dim = dim.get_or_infer((size / total_dim_size) as u64);
            prev_arrow_dtype = prev_arrow_dtype.to_fixed_size_list(dim as usize, true);

            prev_array = FixedSizeListArray::new(
                prev_arrow_dtype.clone(),
                prev_array.len() / dim as usize,
                prev_array,
                None,
            )
            .boxed();
        }
        Ok(prev_array)
    }

    pub fn get_dims(&self) -> Vec<Dimension> {
        let mut dims = vec![
            Dimension::new(self.length as _),
            Dimension::new(self.size as _),
        ];

        let mut prev_array = &self.values;

        while let Some(a) = prev_array.as_any().downcast_ref::<FixedSizeListArray>() {
            dims.push(Dimension::new(a.size as _));
            prev_array = &a.values;
        }
        dims
    }

    pub fn propagate_nulls(&self) -> Self {
        let Some(validity) = self.validity() else {
            return self.clone();
        };

        let propagated_validity = if self.size == 1 {
            validity.clone()
        } else {
            Bitmap::from_trusted_len_iter(
                (0..self.size * validity.len())
                    .map(|i| unsafe { validity.get_bit_unchecked(i / self.size) }),
            )
        };

        let propagated_validity = match self.values.validity() {
            None => propagated_validity,
            Some(val) => val & &propagated_validity,
        };
        Self::new(
            self.dtype().clone(),
            self.length,
            self.values.with_validity(Some(propagated_validity)),
            self.validity.clone(),
        )
    }
}

// must use
impl FixedSizeListArray {
    /// Slices this [`FixedSizeListArray`].
    /// # Implementation
    /// This operation is `O(1)`.
    /// # Panics
    /// panics iff `offset + length > self.len()`
    pub fn slice(&mut self, offset: usize, length: usize) {
        assert!(
            offset + length <= self.len(),
            "the offset of the new Buffer cannot exceed the existing length"
        );
        unsafe { self.slice_unchecked(offset, length) }
    }

    /// Slices this [`FixedSizeListArray`].
    /// # Implementation
    /// This operation is `O(1)`.
    ///
    /// # Safety
    /// The caller must ensure that `offset + length <= self.len()`.
    pub unsafe fn slice_unchecked(&mut self, offset: usize, length: usize) {
        debug_assert!(offset + length <= self.len());
        self.validity = self
            .validity
            .take()
            .map(|bitmap| bitmap.sliced_unchecked(offset, length))
            .filter(|bitmap| bitmap.unset_bits() > 0);
        self.values
            .slice_unchecked(offset * self.size, length * self.size);
        self.length = length;
    }

    impl_sliced!();
    impl_mut_validity!();
    impl_into_array!();
}

// accessors
impl FixedSizeListArray {
    /// Returns the length of this array
    #[inline]
    pub fn len(&self) -> usize {
        debug_assert!(self.has_invariants());
        self.length
    }

    /// The optional validity.
    #[inline]
    pub fn validity(&self) -> Option<&Bitmap> {
        self.validity.as_ref()
    }

    /// Returns the inner array.
    pub fn values(&self) -> &Box<dyn Array> {
        &self.values
    }

    /// Returns the `Vec<T>` at position `i`.
    /// # Panic:
    /// panics iff `i >= self.len()`
    #[inline]
    pub fn value(&self, i: usize) -> Box<dyn Array> {
        self.values.sliced(i * self.size, self.size)
    }

    /// Returns the `Vec<T>` at position `i`.
    ///
    /// # Safety
    /// Caller must ensure that `i < self.len()`
    #[inline]
    pub unsafe fn value_unchecked(&self, i: usize) -> Box<dyn Array> {
        self.values.sliced_unchecked(i * self.size, self.size)
    }

    /// Returns the element at index `i` or `None` if it is null
    /// # Panics
    /// iff `i >= self.len()`
    #[inline]
    pub fn get(&self, i: usize) -> Option<Box<dyn Array>> {
        if !self.is_null(i) {
            // soundness: Array::is_null panics if i >= self.len
            unsafe { Some(self.value_unchecked(i)) }
        } else {
            None
        }
    }
}

impl FixedSizeListArray {
    pub(crate) fn try_child_and_size(dtype: &ArrowDataType) -> PolarsResult<(&Field, usize)> {
        match dtype.to_logical_type() {
            ArrowDataType::FixedSizeList(child, size) => Ok((child.as_ref(), *size)),
            _ => polars_bail!(ComputeError: "FixedSizeListArray expects DataType::FixedSizeList"),
        }
    }

    pub(crate) fn get_child_and_size(dtype: &ArrowDataType) -> (&Field, usize) {
        Self::try_child_and_size(dtype).unwrap()
    }

    /// Returns a [`ArrowDataType`] consistent with [`FixedSizeListArray`].
    pub fn default_datatype(dtype: ArrowDataType, size: usize) -> ArrowDataType {
        let field = Box::new(Field::new(PlSmallStr::from_static("item"), dtype, true));
        ArrowDataType::FixedSizeList(field, size)
    }
}

impl Array for FixedSizeListArray {
    impl_common_array!();

    fn validity(&self) -> Option<&Bitmap> {
        self.validity.as_ref()
    }

    #[inline]
    fn with_validity(&self, validity: Option<Bitmap>) -> Box<dyn Array> {
        Box::new(self.clone().with_validity(validity))
    }
}

impl Splitable for FixedSizeListArray {
    fn check_bound(&self, offset: usize) -> bool {
        offset <= self.len()
    }

    unsafe fn _split_at_unchecked(&self, offset: usize) -> (Self, Self) {
        let (lhs_values, rhs_values) =
            unsafe { self.values.split_at_boxed_unchecked(offset * self.size) };
        let (lhs_validity, rhs_validity) = unsafe { self.validity.split_at_unchecked(offset) };

        let size = self.size;

        (
            Self {
                dtype: self.dtype.clone(),
                length: offset,
                values: lhs_values,
                validity: lhs_validity,
                size,
            },
            Self {
                dtype: self.dtype.clone(),
                length: self.length - offset,
                values: rhs_values,
                validity: rhs_validity,
                size,
            },
        )
    }
}