polars_arrow/bitmap/bitmask.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
#[cfg(feature = "simd")]
use std::simd::{LaneCount, Mask, MaskElement, SupportedLaneCount};
use polars_utils::slice::load_padded_le_u64;
use crate::bitmap::Bitmap;
/// Returns the nth set bit in w, if n+1 bits are set. The indexing is
/// zero-based, nth_set_bit_u32(w, 0) returns the least significant set bit in w.
fn nth_set_bit_u32(w: u32, n: u32) -> Option<u32> {
// If we have BMI2's PDEP available, we use it. It takes the lower order
// bits of the first argument and spreads it along its second argument
// where those bits are 1. So PDEP(abcdefgh, 11001001) becomes ef00g00h.
// We use this by setting the first argument to 1 << n, which means the
// first n-1 zero bits of it will spread to the first n-1 one bits of w,
// after which the one bit will exactly get copied to the nth one bit of w.
#[cfg(all(not(miri), target_feature = "bmi2"))]
{
if n >= 32 {
return None;
}
let nth_set_bit = unsafe { core::arch::x86_64::_pdep_u32(1 << n, w) };
if nth_set_bit == 0 {
return None;
}
Some(nth_set_bit.trailing_zeros())
}
#[cfg(any(miri, not(target_feature = "bmi2")))]
{
// Each block of 2/4/8/16 bits contains how many set bits there are in that block.
let set_per_2 = w - ((w >> 1) & 0x55555555);
let set_per_4 = (set_per_2 & 0x33333333) + ((set_per_2 >> 2) & 0x33333333);
let set_per_8 = (set_per_4 + (set_per_4 >> 4)) & 0x0f0f0f0f;
let set_per_16 = (set_per_8 + (set_per_8 >> 8)) & 0x00ff00ff;
let set_per_32 = (set_per_16 + (set_per_16 >> 16)) & 0xff;
if n >= set_per_32 {
return None;
}
let mut idx = 0;
let mut n = n;
let next16 = set_per_16 & 0xff;
if n >= next16 {
n -= next16;
idx += 16;
}
let next8 = (set_per_8 >> idx) & 0xff;
if n >= next8 {
n -= next8;
idx += 8;
}
let next4 = (set_per_4 >> idx) & 0b1111;
if n >= next4 {
n -= next4;
idx += 4;
}
let next2 = (set_per_2 >> idx) & 0b11;
if n >= next2 {
n -= next2;
idx += 2;
}
let next1 = (w >> idx) & 0b1;
if n >= next1 {
idx += 1;
}
Some(idx)
}
}
#[derive(Default, Clone)]
pub struct BitMask<'a> {
bytes: &'a [u8],
offset: usize,
len: usize,
}
impl<'a> BitMask<'a> {
pub fn from_bitmap(bitmap: &'a Bitmap) -> Self {
let (bytes, offset, len) = bitmap.as_slice();
// Check length so we can use unsafe access in our get.
assert!(bytes.len() * 8 >= len + offset);
Self { bytes, offset, len }
}
#[inline(always)]
pub fn len(&self) -> usize {
self.len
}
#[inline]
pub fn split_at(&self, idx: usize) -> (Self, Self) {
assert!(idx <= self.len);
unsafe { self.split_at_unchecked(idx) }
}
/// # Safety
/// The index must be in-bounds.
#[inline]
pub unsafe fn split_at_unchecked(&self, idx: usize) -> (Self, Self) {
debug_assert!(idx <= self.len);
let left = Self { len: idx, ..*self };
let right = Self {
len: self.len - idx,
offset: self.offset + idx,
..*self
};
(left, right)
}
#[cfg(feature = "simd")]
#[inline]
pub fn get_simd<T, const N: usize>(&self, idx: usize) -> Mask<T, N>
where
T: MaskElement,
LaneCount<N>: SupportedLaneCount,
{
// We don't support 64-lane masks because then we couldn't load our
// bitwise mask as a u64 and then do the byteshift on it.
let lanes = LaneCount::<N>::BITMASK_LEN;
assert!(lanes < 64);
let start_byte_idx = (self.offset + idx) / 8;
let byte_shift = (self.offset + idx) % 8;
if idx + lanes <= self.len {
// SAFETY: fast path, we know this is completely in-bounds.
let mask = load_padded_le_u64(unsafe { self.bytes.get_unchecked(start_byte_idx..) });
Mask::from_bitmask(mask >> byte_shift)
} else if idx < self.len {
// SAFETY: we know that at least the first byte is in-bounds.
// This is partially out of bounds, we have to do extra masking.
let mask = load_padded_le_u64(unsafe { self.bytes.get_unchecked(start_byte_idx..) });
let num_out_of_bounds = idx + lanes - self.len;
let shifted = (mask << num_out_of_bounds) >> (num_out_of_bounds + byte_shift);
Mask::from_bitmask(shifted)
} else {
Mask::from_bitmask(0u64)
}
}
#[inline]
pub fn get_u32(&self, idx: usize) -> u32 {
let start_byte_idx = (self.offset + idx) / 8;
let byte_shift = (self.offset + idx) % 8;
if idx + 32 <= self.len {
// SAFETY: fast path, we know this is completely in-bounds.
let mask = load_padded_le_u64(unsafe { self.bytes.get_unchecked(start_byte_idx..) });
(mask >> byte_shift) as u32
} else if idx < self.len {
// SAFETY: we know that at least the first byte is in-bounds.
// This is partially out of bounds, we have to do extra masking.
let mask = load_padded_le_u64(unsafe { self.bytes.get_unchecked(start_byte_idx..) });
let out_of_bounds_mask = (1u32 << (self.len - idx)) - 1;
((mask >> byte_shift) as u32) & out_of_bounds_mask
} else {
0
}
}
/// Computes the index of the nth set bit after start.
///
/// Both are zero-indexed, so nth_set_bit_idx(0, 0) finds the index of the
/// first bit set (which can be 0 as well). The returned index is absolute,
/// not relative to start.
pub fn nth_set_bit_idx(&self, mut n: usize, mut start: usize) -> Option<usize> {
while start < self.len {
let next_u32_mask = self.get_u32(start);
if next_u32_mask == u32::MAX {
// Happy fast path for dense non-null section.
if n < 32 {
return Some(start + n);
}
n -= 32;
} else {
let ones = next_u32_mask.count_ones() as usize;
if n < ones {
let idx = unsafe {
// SAFETY: we know the nth bit is in the mask.
nth_set_bit_u32(next_u32_mask, n as u32).unwrap_unchecked() as usize
};
return Some(start + idx);
}
n -= ones;
}
start += 32;
}
None
}
/// Computes the index of the nth set bit before end, counting backwards.
///
/// Both are zero-indexed, so nth_set_bit_idx_rev(0, len) finds the index of
/// the last bit set (which can be 0 as well). The returned index is
/// absolute (and starts at the beginning), not relative to end.
pub fn nth_set_bit_idx_rev(&self, mut n: usize, mut end: usize) -> Option<usize> {
while end > 0 {
// We want to find bits *before* end, so if end < 32 we must mask
// out the bits after the endth.
let (u32_mask_start, u32_mask_mask) = if end >= 32 {
(end - 32, u32::MAX)
} else {
(0, (1 << end) - 1)
};
let next_u32_mask = self.get_u32(u32_mask_start) & u32_mask_mask;
if next_u32_mask == u32::MAX {
// Happy fast path for dense non-null section.
if n < 32 {
return Some(end - 1 - n);
}
n -= 32;
} else {
let ones = next_u32_mask.count_ones() as usize;
if n < ones {
let rev_n = ones - 1 - n;
let idx = unsafe {
// SAFETY: we know the rev_nth bit is in the mask.
nth_set_bit_u32(next_u32_mask, rev_n as u32).unwrap_unchecked() as usize
};
return Some(u32_mask_start + idx);
}
n -= ones;
}
end = u32_mask_start;
}
None
}
#[inline]
pub fn get(&self, idx: usize) -> bool {
let byte_idx = (self.offset + idx) / 8;
let byte_shift = (self.offset + idx) % 8;
if idx < self.len {
// SAFETY: we know this is in-bounds.
let byte = unsafe { *self.bytes.get_unchecked(byte_idx) };
(byte >> byte_shift) & 1 == 1
} else {
false
}
}
}
#[cfg(test)]
mod test {
use super::*;
fn naive_nth_bit_set(mut w: u32, mut n: u32) -> Option<u32> {
for i in 0..32 {
if w & (1 << i) != 0 {
if n == 0 {
return Some(i);
}
n -= 1;
w ^= 1 << i;
}
}
None
}
#[test]
fn test_nth_set_bit_u32() {
for n in 0..256 {
assert_eq!(nth_set_bit_u32(0, n), None);
}
for i in 0..32 {
assert_eq!(nth_set_bit_u32(1 << i, 0), Some(i));
assert_eq!(nth_set_bit_u32(1 << i, 1), None);
}
for i in 0..10000 {
let rnd = (0xbdbc9d8ec9d5c461u64.wrapping_mul(i as u64) >> 32) as u32;
for i in 0..=32 {
assert_eq!(nth_set_bit_u32(rnd, i), naive_nth_bit_set(rnd, i));
}
}
}
}