polars_arrow/bitmap/
immutable.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
use std::ops::Deref;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::LazyLock;

use either::Either;
use polars_error::{polars_bail, PolarsResult};

use super::utils::{count_zeros, fmt, get_bit_unchecked, BitChunk, BitChunks, BitmapIter};
use super::{chunk_iter_to_vec, intersects_with, num_intersections_with, IntoIter, MutableBitmap};
use crate::array::Splitable;
use crate::bitmap::aligned::AlignedBitmapSlice;
use crate::bitmap::iterator::{
    FastU32BitmapIter, FastU56BitmapIter, FastU64BitmapIter, TrueIdxIter,
};
use crate::legacy::utils::FromTrustedLenIterator;
use crate::storage::SharedStorage;
use crate::trusted_len::TrustedLen;

const UNKNOWN_BIT_COUNT: u64 = u64::MAX;

/// An immutable container semantically equivalent to `Arc<Vec<bool>>` but represented as `Arc<Vec<u8>>` where
/// each boolean is represented as a single bit.
///
/// # Examples
/// ```
/// use polars_arrow::bitmap::{Bitmap, MutableBitmap};
///
/// let bitmap = Bitmap::from([true, false, true]);
/// assert_eq!(bitmap.iter().collect::<Vec<_>>(), vec![true, false, true]);
///
/// // creation directly from bytes
/// let bitmap = Bitmap::try_new(vec![0b00001101], 5).unwrap();
/// // note: the first bit is the left-most of the first byte
/// assert_eq!(bitmap.iter().collect::<Vec<_>>(), vec![true, false, true, true, false]);
/// // we can also get the slice:
/// assert_eq!(bitmap.as_slice(), ([0b00001101u8].as_ref(), 0, 5));
/// // debug helps :)
/// assert_eq!(format!("{:?}", bitmap), "Bitmap { len: 5, offset: 0, bytes: [0b___01101] }");
///
/// // it supports copy-on-write semantics (to a `MutableBitmap`)
/// let bitmap: MutableBitmap = bitmap.into_mut().right().unwrap();
/// assert_eq!(bitmap, MutableBitmap::from([true, false, true, true, false]));
///
/// // slicing is 'O(1)' (data is shared)
/// let bitmap = Bitmap::try_new(vec![0b00001101], 5).unwrap();
/// let mut sliced = bitmap.clone();
/// sliced.slice(1, 4);
/// assert_eq!(sliced.as_slice(), ([0b00001101u8].as_ref(), 1, 4)); // 1 here is the offset:
/// assert_eq!(format!("{:?}", sliced), "Bitmap { len: 4, offset: 1, bytes: [0b___0110_] }");
/// // when sliced (or cloned), it is no longer possible to `into_mut`.
/// let same: Bitmap = sliced.into_mut().left().unwrap();
/// ```
pub struct Bitmap {
    storage: SharedStorage<u8>,
    // Both offset and length are measured in bits. They are used to bound the
    // bitmap to a region of Bytes.
    offset: usize,
    length: usize,

    // A bit field that contains our cache for the number of unset bits.
    // If it is u64::MAX, we have no known value at all.
    // Other bit patterns where the top bit is set is reserved for future use.
    // If the top bit is not set we have an exact count.
    unset_bit_count_cache: AtomicU64,
}

#[inline(always)]
fn has_cached_unset_bit_count(ubcc: u64) -> bool {
    ubcc >> 63 == 0
}

impl Clone for Bitmap {
    fn clone(&self) -> Self {
        Self {
            storage: self.storage.clone(),
            offset: self.offset,
            length: self.length,
            unset_bit_count_cache: AtomicU64::new(
                self.unset_bit_count_cache.load(Ordering::Relaxed),
            ),
        }
    }
}

impl std::fmt::Debug for Bitmap {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let (bytes, offset, len) = self.as_slice();
        fmt(bytes, offset, len, f)
    }
}

impl Default for Bitmap {
    fn default() -> Self {
        MutableBitmap::new().into()
    }
}

pub(super) fn check(bytes: &[u8], offset: usize, length: usize) -> PolarsResult<()> {
    if offset + length > bytes.len().saturating_mul(8) {
        polars_bail!(InvalidOperation:
            "The offset + length of the bitmap ({}) must be `<=` to the number of bytes times 8 ({})",
            offset + length,
            bytes.len().saturating_mul(8)
        );
    }
    Ok(())
}

impl Bitmap {
    /// Initializes an empty [`Bitmap`].
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Initializes a new [`Bitmap`] from vector of bytes and a length.
    /// # Errors
    /// This function errors iff `length > bytes.len() * 8`
    #[inline]
    pub fn try_new(bytes: Vec<u8>, length: usize) -> PolarsResult<Self> {
        check(&bytes, 0, length)?;
        Ok(Self {
            storage: SharedStorage::from_vec(bytes),
            length,
            offset: 0,
            unset_bit_count_cache: AtomicU64::new(if length == 0 { 0 } else { UNKNOWN_BIT_COUNT }),
        })
    }

    /// Returns the length of the [`Bitmap`].
    #[inline]
    pub fn len(&self) -> usize {
        self.length
    }

    /// Returns whether [`Bitmap`] is empty
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns a new iterator of `bool` over this bitmap
    pub fn iter(&self) -> BitmapIter {
        BitmapIter::new(&self.storage, self.offset, self.length)
    }

    /// Returns an iterator over bits in bit chunks [`BitChunk`].
    ///
    /// This iterator is useful to operate over multiple bits via e.g. bitwise.
    pub fn chunks<T: BitChunk>(&self) -> BitChunks<T> {
        BitChunks::new(&self.storage, self.offset, self.length)
    }

    /// Returns a fast iterator that gives 32 bits at a time.
    /// Has a remainder that must be handled separately.
    pub fn fast_iter_u32(&self) -> FastU32BitmapIter<'_> {
        FastU32BitmapIter::new(&self.storage, self.offset, self.length)
    }

    /// Returns a fast iterator that gives 56 bits at a time.
    /// Has a remainder that must be handled separately.
    pub fn fast_iter_u56(&self) -> FastU56BitmapIter<'_> {
        FastU56BitmapIter::new(&self.storage, self.offset, self.length)
    }

    /// Returns a fast iterator that gives 64 bits at a time.
    /// Has a remainder that must be handled separately.
    pub fn fast_iter_u64(&self) -> FastU64BitmapIter<'_> {
        FastU64BitmapIter::new(&self.storage, self.offset, self.length)
    }

    /// Returns an iterator that only iterates over the set bits.
    pub fn true_idx_iter(&self) -> TrueIdxIter<'_> {
        TrueIdxIter::new(self.len(), Some(self))
    }

    /// Returns the bits of this [`Bitmap`] as a [`AlignedBitmapSlice`].
    pub fn aligned<T: BitChunk>(&self) -> AlignedBitmapSlice<'_, T> {
        AlignedBitmapSlice::new(&self.storage, self.offset, self.length)
    }

    /// Returns the byte slice of this [`Bitmap`].
    ///
    /// The returned tuple contains:
    /// * `.1`: The byte slice, truncated to the start of the first bit. So the start of the slice
    ///       is within the first 8 bits.
    /// * `.2`: The start offset in bits on a range `0 <= offsets < 8`.
    /// * `.3`: The length in number of bits.
    #[inline]
    pub fn as_slice(&self) -> (&[u8], usize, usize) {
        let start = self.offset / 8;
        let len = (self.offset % 8 + self.length).saturating_add(7) / 8;
        (
            &self.storage[start..start + len],
            self.offset % 8,
            self.length,
        )
    }

    /// Returns the number of set bits on this [`Bitmap`].
    ///
    /// See `unset_bits` for details.
    #[inline]
    pub fn set_bits(&self) -> usize {
        self.length - self.unset_bits()
    }

    /// Returns the number of set bits on this [`Bitmap`] if it is known.
    ///
    /// See `lazy_unset_bits` for details.
    #[inline]
    pub fn lazy_set_bits(&self) -> Option<usize> {
        Some(self.length - self.lazy_unset_bits()?)
    }

    /// Returns the number of unset bits on this [`Bitmap`].
    ///
    /// Guaranteed to be `<= self.len()`.
    ///
    /// # Implementation
    ///
    /// This function counts the number of unset bits if it is not already
    /// computed. Repeated calls use the cached bitcount.
    pub fn unset_bits(&self) -> usize {
        self.lazy_unset_bits().unwrap_or_else(|| {
            let zeros = count_zeros(&self.storage, self.offset, self.length);
            self.unset_bit_count_cache
                .store(zeros as u64, Ordering::Relaxed);
            zeros
        })
    }

    /// Returns the number of unset bits on this [`Bitmap`] if it is known.
    ///
    /// Guaranteed to be `<= self.len()`.
    pub fn lazy_unset_bits(&self) -> Option<usize> {
        let cache = self.unset_bit_count_cache.load(Ordering::Relaxed);
        has_cached_unset_bit_count(cache).then_some(cache as usize)
    }

    /// Updates the count of the number of set bits on this [`Bitmap`].
    ///
    /// # Safety
    ///
    /// The number of set bits must be correct.
    pub unsafe fn update_bit_count(&mut self, bits_set: usize) {
        assert!(bits_set <= self.length);
        let zeros = self.length - bits_set;
        self.unset_bit_count_cache
            .store(zeros as u64, Ordering::Relaxed);
    }

    /// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
    /// # Panic
    /// Panics iff `offset + length > self.length`, i.e. if the offset and `length`
    /// exceeds the allocated capacity of `self`.
    #[inline]
    pub fn slice(&mut self, offset: usize, length: usize) {
        assert!(offset + length <= self.length);
        unsafe { self.slice_unchecked(offset, length) }
    }

    /// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
    ///
    /// # Safety
    /// The caller must ensure that `self.offset + offset + length <= self.len()`
    #[inline]
    pub unsafe fn slice_unchecked(&mut self, offset: usize, length: usize) {
        // Fast path: no-op slice.
        if offset == 0 && length == self.length {
            return;
        }

        // Fast path: we have no nulls or are full-null.
        let unset_bit_count_cache = self.unset_bit_count_cache.get_mut();
        if *unset_bit_count_cache == 0 || *unset_bit_count_cache == self.length as u64 {
            let new_count = if *unset_bit_count_cache > 0 {
                length as u64
            } else {
                0
            };
            *unset_bit_count_cache = new_count;
            self.offset += offset;
            self.length = length;
            return;
        }

        if has_cached_unset_bit_count(*unset_bit_count_cache) {
            // If we keep all but a small portion of the array it is worth
            // doing an eager re-count since we can reuse the old count via the
            // inclusion-exclusion principle.
            let small_portion = (self.length / 5).max(32);
            if length + small_portion >= self.length {
                // Subtract the null count of the chunks we slice off.
                let slice_end = self.offset + offset + length;
                let head_count = count_zeros(&self.storage, self.offset, offset);
                let tail_count =
                    count_zeros(&self.storage, slice_end, self.length - length - offset);
                let new_count = *unset_bit_count_cache - head_count as u64 - tail_count as u64;
                *unset_bit_count_cache = new_count;
            } else {
                *unset_bit_count_cache = UNKNOWN_BIT_COUNT;
            }
        }

        self.offset += offset;
        self.length = length;
    }

    /// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
    /// # Panic
    /// Panics iff `offset + length > self.length`, i.e. if the offset and `length`
    /// exceeds the allocated capacity of `self`.
    #[inline]
    #[must_use]
    pub fn sliced(self, offset: usize, length: usize) -> Self {
        assert!(offset + length <= self.length);
        unsafe { self.sliced_unchecked(offset, length) }
    }

    /// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
    ///
    /// # Safety
    /// The caller must ensure that `self.offset + offset + length <= self.len()`
    #[inline]
    #[must_use]
    pub unsafe fn sliced_unchecked(mut self, offset: usize, length: usize) -> Self {
        self.slice_unchecked(offset, length);
        self
    }

    /// Returns whether the bit at position `i` is set.
    /// # Panics
    /// Panics iff `i >= self.len()`.
    #[inline]
    pub fn get_bit(&self, i: usize) -> bool {
        assert!(i < self.len());
        unsafe { self.get_bit_unchecked(i) }
    }

    /// Unsafely returns whether the bit at position `i` is set.
    ///
    /// # Safety
    /// Unsound iff `i >= self.len()`.
    #[inline]
    pub unsafe fn get_bit_unchecked(&self, i: usize) -> bool {
        debug_assert!(i < self.len());
        get_bit_unchecked(&self.storage, self.offset + i)
    }

    /// Returns a pointer to the start of this [`Bitmap`] (ignores `offsets`)
    /// This pointer is allocated iff `self.len() > 0`.
    pub(crate) fn as_ptr(&self) -> *const u8 {
        self.storage.deref().as_ptr()
    }

    /// Returns a pointer to the start of this [`Bitmap`] (ignores `offsets`)
    /// This pointer is allocated iff `self.len() > 0`.
    pub(crate) fn offset(&self) -> usize {
        self.offset
    }

    /// Converts this [`Bitmap`] to [`MutableBitmap`], returning itself if the conversion
    /// is not possible
    ///
    /// This operation returns a [`MutableBitmap`] iff:
    /// * this [`Bitmap`] is not an offsetted slice of another [`Bitmap`]
    /// * this [`Bitmap`] has not been cloned (i.e. [`Arc`]`::get_mut` yields [`Some`])
    /// * this [`Bitmap`] was not imported from the c data interface (FFI)
    pub fn into_mut(mut self) -> Either<Self, MutableBitmap> {
        match self.storage.try_into_vec() {
            Ok(v) => Either::Right(MutableBitmap::from_vec(v, self.length)),
            Err(storage) => {
                self.storage = storage;
                Either::Left(self)
            },
        }
    }

    /// Converts this [`Bitmap`] into a [`MutableBitmap`], cloning its internal
    /// buffer if required (clone-on-write).
    pub fn make_mut(self) -> MutableBitmap {
        match self.into_mut() {
            Either::Left(data) => {
                if data.offset > 0 {
                    // re-align the bits (remove the offset)
                    let chunks = data.chunks::<u64>();
                    let remainder = chunks.remainder();
                    let vec = chunk_iter_to_vec(chunks.chain(std::iter::once(remainder)));
                    MutableBitmap::from_vec(vec, data.length)
                } else {
                    MutableBitmap::from_vec(data.storage.as_ref().to_vec(), data.length)
                }
            },
            Either::Right(data) => data,
        }
    }

    /// Initializes an new [`Bitmap`] filled with unset values.
    #[inline]
    pub fn new_zeroed(length: usize) -> Self {
        // We intentionally leak 1MiB of zeroed memory once so we don't have to
        // refcount it.
        const GLOBAL_ZERO_SIZE: usize = 1024 * 1024;
        static GLOBAL_ZEROES: LazyLock<SharedStorage<u8>> =
            LazyLock::new(|| SharedStorage::from_static(vec![0; GLOBAL_ZERO_SIZE].leak()));

        let bytes_needed = length.div_ceil(8);
        let storage = if bytes_needed <= GLOBAL_ZERO_SIZE {
            GLOBAL_ZEROES.clone()
        } else {
            SharedStorage::from_vec(vec![0; bytes_needed])
        };
        Self {
            storage,
            offset: 0,
            length,
            unset_bit_count_cache: AtomicU64::new(length as u64),
        }
    }

    /// Initializes an new [`Bitmap`] filled with the given value.
    #[inline]
    pub fn new_with_value(value: bool, length: usize) -> Self {
        // Don't use `MutableBitmap::from_len_zeroed().into()`, it triggers a bitcount.
        let bytes = if value {
            vec![u8::MAX; length.saturating_add(7) / 8]
        } else {
            vec![0; length.saturating_add(7) / 8]
        };
        let unset_bits = if value { 0 } else { length };
        unsafe {
            Bitmap::from_inner_unchecked(
                SharedStorage::from_vec(bytes),
                0,
                length,
                Some(unset_bits),
            )
        }
    }

    /// Counts the nulls (unset bits) starting from `offset` bits and for `length` bits.
    #[inline]
    pub fn null_count_range(&self, offset: usize, length: usize) -> usize {
        count_zeros(&self.storage, self.offset + offset, length)
    }

    /// Creates a new [`Bitmap`] from a slice and length.
    /// # Panic
    /// Panics iff `length <= bytes.len() * 8`
    #[inline]
    pub fn from_u8_slice<T: AsRef<[u8]>>(slice: T, length: usize) -> Self {
        Bitmap::try_new(slice.as_ref().to_vec(), length).unwrap()
    }

    /// Alias for `Bitmap::try_new().unwrap()`
    /// This function is `O(1)`
    /// # Panic
    /// This function panics iff `length > bytes.len() * 8`
    #[inline]
    pub fn from_u8_vec(vec: Vec<u8>, length: usize) -> Self {
        Bitmap::try_new(vec, length).unwrap()
    }

    /// Returns whether the bit at position `i` is set.
    #[inline]
    pub fn get(&self, i: usize) -> Option<bool> {
        if i < self.len() {
            Some(unsafe { self.get_bit_unchecked(i) })
        } else {
            None
        }
    }

    /// Creates a `[Bitmap]` from its internal representation.
    /// This is the inverted from `[Bitmap::into_inner]`
    ///
    /// # Safety
    /// Callers must ensure all invariants of this struct are upheld.
    pub unsafe fn from_inner_unchecked(
        storage: SharedStorage<u8>,
        offset: usize,
        length: usize,
        unset_bits: Option<usize>,
    ) -> Self {
        debug_assert!(check(&storage[..], offset, length).is_ok());

        let unset_bit_count_cache = if let Some(n) = unset_bits {
            AtomicU64::new(n as u64)
        } else {
            AtomicU64::new(UNKNOWN_BIT_COUNT)
        };
        Self {
            storage,
            offset,
            length,
            unset_bit_count_cache,
        }
    }

    /// Checks whether two [`Bitmap`]s have shared set bits.
    ///
    /// This is an optimized version of `(self & other) != 0000..`.
    pub fn intersects_with(&self, other: &Self) -> bool {
        intersects_with(self, other)
    }

    /// Calculates the number of shared set bits between two [`Bitmap`]s.
    pub fn num_intersections_with(&self, other: &Self) -> usize {
        num_intersections_with(self, other)
    }

    /// Select between `truthy` and `falsy` based on `self`.
    ///
    /// This essentially performs:
    ///
    /// `out[i] = if self[i] { truthy[i] } else { falsy[i] }`
    pub fn select(&self, truthy: &Self, falsy: &Self) -> Self {
        super::bitmap_ops::select(self, truthy, falsy)
    }

    /// Select between `truthy` and constant `falsy` based on `self`.
    ///
    /// This essentially performs:
    ///
    /// `out[i] = if self[i] { truthy[i] } else { falsy }`
    pub fn select_constant(&self, truthy: &Self, falsy: bool) -> Self {
        super::bitmap_ops::select_constant(self, truthy, falsy)
    }

    /// Calculates the number of edges from `0 -> 1` and `1 -> 0`.
    pub fn num_edges(&self) -> usize {
        super::bitmap_ops::num_edges(self)
    }
}

impl<P: AsRef<[bool]>> From<P> for Bitmap {
    fn from(slice: P) -> Self {
        Self::from_trusted_len_iter(slice.as_ref().iter().copied())
    }
}

impl FromIterator<bool> for Bitmap {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = bool>,
    {
        MutableBitmap::from_iter(iter).into()
    }
}

impl FromTrustedLenIterator<bool> for Bitmap {
    fn from_iter_trusted_length<T: IntoIterator<Item = bool>>(iter: T) -> Self
    where
        T::IntoIter: TrustedLen,
    {
        MutableBitmap::from_trusted_len_iter(iter.into_iter()).into()
    }
}

impl Bitmap {
    /// Creates a new [`Bitmap`] from an iterator of booleans.
    ///
    /// # Safety
    /// The iterator must report an accurate length.
    #[inline]
    pub unsafe fn from_trusted_len_iter_unchecked<I: Iterator<Item = bool>>(iterator: I) -> Self {
        MutableBitmap::from_trusted_len_iter_unchecked(iterator).into()
    }

    /// Creates a new [`Bitmap`] from an iterator of booleans.
    #[inline]
    pub fn from_trusted_len_iter<I: TrustedLen<Item = bool>>(iterator: I) -> Self {
        MutableBitmap::from_trusted_len_iter(iterator).into()
    }

    /// Creates a new [`Bitmap`] from a fallible iterator of booleans.
    #[inline]
    pub fn try_from_trusted_len_iter<E, I: TrustedLen<Item = std::result::Result<bool, E>>>(
        iterator: I,
    ) -> std::result::Result<Self, E> {
        Ok(MutableBitmap::try_from_trusted_len_iter(iterator)?.into())
    }

    /// Creates a new [`Bitmap`] from a fallible iterator of booleans.
    ///
    /// # Safety
    /// The iterator must report an accurate length.
    #[inline]
    pub unsafe fn try_from_trusted_len_iter_unchecked<
        E,
        I: Iterator<Item = std::result::Result<bool, E>>,
    >(
        iterator: I,
    ) -> std::result::Result<Self, E> {
        Ok(MutableBitmap::try_from_trusted_len_iter_unchecked(iterator)?.into())
    }
}

impl<'a> IntoIterator for &'a Bitmap {
    type Item = bool;
    type IntoIter = BitmapIter<'a>;

    fn into_iter(self) -> Self::IntoIter {
        BitmapIter::<'a>::new(&self.storage, self.offset, self.length)
    }
}

impl IntoIterator for Bitmap {
    type Item = bool;
    type IntoIter = IntoIter;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter::new(self)
    }
}

impl Splitable for Bitmap {
    #[inline(always)]
    fn check_bound(&self, offset: usize) -> bool {
        offset <= self.len()
    }

    unsafe fn _split_at_unchecked(&self, offset: usize) -> (Self, Self) {
        if offset == 0 {
            return (Self::new(), self.clone());
        }
        if offset == self.len() {
            return (self.clone(), Self::new());
        }

        let ubcc = self.unset_bit_count_cache.load(Ordering::Relaxed);

        let lhs_length = offset;
        let rhs_length = self.length - offset;

        let mut lhs_ubcc = UNKNOWN_BIT_COUNT;
        let mut rhs_ubcc = UNKNOWN_BIT_COUNT;

        if has_cached_unset_bit_count(ubcc) {
            if ubcc == 0 {
                lhs_ubcc = 0;
                rhs_ubcc = 0;
            } else if ubcc == self.length as u64 {
                lhs_ubcc = offset as u64;
                rhs_ubcc = (self.length - offset) as u64;
            } else {
                // If we keep all but a small portion of the array it is worth
                // doing an eager re-count since we can reuse the old count via the
                // inclusion-exclusion principle.
                let small_portion = (self.length / 4).max(32);

                if lhs_length <= rhs_length {
                    if rhs_length + small_portion >= self.length {
                        let count = count_zeros(&self.storage, self.offset, lhs_length) as u64;
                        lhs_ubcc = count;
                        rhs_ubcc = ubcc - count;
                    }
                } else if lhs_length + small_portion >= self.length {
                    let count = count_zeros(&self.storage, self.offset + offset, rhs_length) as u64;
                    lhs_ubcc = ubcc - count;
                    rhs_ubcc = count;
                }
            }
        }

        debug_assert!(lhs_ubcc == UNKNOWN_BIT_COUNT || lhs_ubcc <= ubcc);
        debug_assert!(rhs_ubcc == UNKNOWN_BIT_COUNT || rhs_ubcc <= ubcc);

        (
            Self {
                storage: self.storage.clone(),
                offset: self.offset,
                length: lhs_length,
                unset_bit_count_cache: AtomicU64::new(lhs_ubcc),
            },
            Self {
                storage: self.storage.clone(),
                offset: self.offset + offset,
                length: rhs_length,
                unset_bit_count_cache: AtomicU64::new(rhs_ubcc),
            },
        )
    }
}