polars_compute/filter/
boolean.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
use arrow::bitmap::Bitmap;
use polars_utils::clmul::prefix_xorsum;

const U56_MAX: u64 = (1 << 56) - 1;

fn pext64_polyfill(mut v: u64, mut m: u64, m_popcnt: u32) -> u64 {
    // Fast path: popcount is low.
    if m_popcnt <= 4 {
        // Not a "while m != 0" but a for loop instead so the compiler fully
        // unrolls the loop, this makes bit << i much faster.
        let mut out = 0;
        for i in 0..4 {
            if m == 0 {
                break;
            };

            let bit = (v >> m.trailing_zeros()) & 1;
            out |= bit << i;
            m &= m.wrapping_sub(1); // Clear least significant bit.
        }
        return out;
    }

    // Fast path: all the masked bits in v are 0 or 1.
    // Despite this fast path being simpler than the above popcount-based one,
    // we do it afterwards because if m has a low popcount these branches become
    // very unpredictable.
    v &= m;
    if v == 0 {
        return 0;
    } else if v == m {
        return (1 << m_popcnt) - 1;
    }

    // This algorithm is too involved to explain here, see https://github.com/zwegner/zp7.
    // That is an optimized version of Hacker's Delight Chapter 7-4, parallel suffix method for compress().
    let mut invm = !m;

    for i in 0..6 {
        let shift = 1 << i;
        let prefix_count_bit = if i < 5 {
            prefix_xorsum(invm)
        } else {
            invm.wrapping_neg() << 1
        };
        let keep_in_place = v & !prefix_count_bit;
        let shift_down = v & prefix_count_bit;
        v = keep_in_place | (shift_down >> shift);
        invm &= prefix_count_bit;
    }
    v
}

pub fn filter_boolean_kernel(values: &Bitmap, mask: &Bitmap) -> Bitmap {
    assert_eq!(values.len(), mask.len());
    let mask_bits_set = mask.set_bits();

    // Fast path: values is all-0s or all-1s.
    if let Some(num_values_bits) = values.lazy_set_bits() {
        if num_values_bits == 0 || num_values_bits == values.len() {
            return Bitmap::new_with_value(num_values_bits == values.len(), mask_bits_set);
        }
    }

    // Fast path: mask is all-0s or all-1s.
    if mask_bits_set == 0 {
        return Bitmap::new();
    } else if mask_bits_set == mask.len() {
        return values.clone();
    }

    // Overallocate by 1 u64 so we can always do a full u64 write.
    let num_words = mask_bits_set.div_ceil(64);
    let num_bytes = 8 * (num_words + 1);
    let mut out_vec: Vec<u8> = Vec::with_capacity(num_bytes);

    unsafe {
        if mask_bits_set <= mask.len() / (64 * 4) {
            // Less than one in 1 in 4 words has a bit set on average, use sparse kernel.
            filter_boolean_kernel_sparse(values, mask, out_vec.as_mut_ptr());
        } else if polars_utils::cpuid::has_fast_bmi2() {
            #[cfg(target_arch = "x86_64")]
            filter_boolean_kernel_pext::<true, _>(values, mask, out_vec.as_mut_ptr(), |v, m, _| {
                // SAFETY: has_fast_bmi2 ensures this is a legal instruction.
                core::arch::x86_64::_pext_u64(v, m)
            });
        } else {
            filter_boolean_kernel_pext::<false, _>(
                values,
                mask,
                out_vec.as_mut_ptr(),
                pext64_polyfill,
            )
        }

        // SAFETY: the above filters must have initialized these bytes.
        out_vec.set_len(mask_bits_set.div_ceil(8));
    }

    Bitmap::from_u8_vec(out_vec, mask_bits_set)
}

/// # Safety
/// out_ptr must point to a buffer of length >= 8 + 8 * ceil(mask.set_bits() / 64).
/// This function will initialize at least the first ceil(mask.set_bits() / 8) bytes.
unsafe fn filter_boolean_kernel_sparse(values: &Bitmap, mask: &Bitmap, mut out_ptr: *mut u8) {
    assert_eq!(values.len(), mask.len());

    let mut value_idx = 0;
    let mut bits_in_word = 0usize;
    let mut word = 0u64;

    macro_rules! loop_body {
        ($m: expr) => {{
            let mut m = $m;
            while m > 0 {
                let idx_in_m = m.trailing_zeros() as usize;
                let bit = unsafe { values.get_bit_unchecked(value_idx + idx_in_m) };
                word |= (bit as u64) << bits_in_word;
                bits_in_word += 1;

                if bits_in_word == 64 {
                    unsafe {
                        out_ptr.cast::<u64>().write_unaligned(word.to_le());
                        out_ptr = out_ptr.add(8);
                        bits_in_word = 0;
                        word = 0;
                    }
                }

                m &= m.wrapping_sub(1); // Clear least significant bit.
            }
        }};
    }

    let mask_aligned = mask.aligned::<u64>();
    if mask_aligned.prefix_bitlen() > 0 {
        loop_body!(mask_aligned.prefix());
        value_idx += mask_aligned.prefix_bitlen();
    }

    for m in mask_aligned.bulk_iter() {
        loop_body!(m);
        value_idx += 64;
    }

    if mask_aligned.suffix_bitlen() > 0 {
        loop_body!(mask_aligned.suffix());
    }

    if bits_in_word > 0 {
        unsafe {
            out_ptr.cast::<u64>().write_unaligned(word.to_le());
        }
    }
}

/// # Safety
/// See filter_boolean_kernel_sparse.
unsafe fn filter_boolean_kernel_pext<const HAS_NATIVE_PEXT: bool, F: Fn(u64, u64, u32) -> u64>(
    values: &Bitmap,
    mask: &Bitmap,
    mut out_ptr: *mut u8,
    pext: F,
) {
    assert_eq!(values.len(), mask.len());

    let mut bits_in_word = 0usize;
    let mut word = 0u64;

    macro_rules! loop_body {
        ($v: expr, $m: expr) => {{
            let (v, m) = ($v, $m);

            // Fast-path, all-0 mask.
            if m == 0 {
                continue;
            }

            // Fast path, all-1 mask.
            // This is only worth it if we don't have a native pext.
            if !HAS_NATIVE_PEXT && m == U56_MAX {
                word |= v << bits_in_word;
                unsafe {
                    out_ptr.cast::<u64>().write_unaligned(word.to_le());
                    out_ptr = out_ptr.add(7);
                }
                word >>= 56;
                continue;
            }

            let mask_popcnt = m.count_ones();
            let bits = pext(v, m, mask_popcnt);

            // Because we keep bits_in_word < 8 and we iterate over u56s,
            // this never loses output bits.
            word |= bits << bits_in_word;
            bits_in_word += mask_popcnt as usize;
            unsafe {
                out_ptr.cast::<u64>().write_unaligned(word.to_le());

                let full_bytes_written = bits_in_word / 8;
                out_ptr = out_ptr.add(full_bytes_written);
                word >>= full_bytes_written * 8;
                bits_in_word %= 8;
            }
        }};
    }

    let mut v_iter = values.fast_iter_u56();
    let mut m_iter = mask.fast_iter_u56();
    for v in &mut v_iter {
        // SAFETY: we checked values and mask have same length.
        let m = unsafe { m_iter.next().unwrap_unchecked() };
        loop_body!(v, m);
    }
    let mut v_rem = v_iter.remainder().0;
    let mut m_rem = m_iter.remainder().0;
    while m_rem != 0 {
        let v = v_rem & U56_MAX;
        let m = m_rem & U56_MAX;
        v_rem >>= 56;
        m_rem >>= 56;
        loop_body!(v, m); // Careful, contains 'continue', increment loop variables first.
    }
}

pub fn filter_bitmap_and_validity(
    values: &Bitmap,
    validity: Option<&Bitmap>,
    mask: &Bitmap,
) -> (Bitmap, Option<Bitmap>) {
    let filtered_values = filter_boolean_kernel(values, mask);
    if let Some(validity) = validity {
        // TODO: we could theoretically be faster by computing these two filters
        // at once. Unsure if worth duplicating all the code above.
        let filtered_validity = filter_boolean_kernel(validity, mask);
        (filtered_values, Some(filtered_validity))
    } else {
        (filtered_values, None)
    }
}

#[cfg(test)]
mod test {
    use rand::prelude::*;

    use super::*;

    fn naive_pext64(word: u64, mask: u64) -> u64 {
        let mut out = 0;
        let mut out_idx = 0;

        for i in 0..64 {
            let ith_mask_bit = (mask >> i) & 1;
            let ith_word_bit = (word >> i) & 1;
            if ith_mask_bit == 1 {
                out |= ith_word_bit << out_idx;
                out_idx += 1;
            }
        }

        out
    }

    #[test]
    fn test_pext64() {
        // Verify polyfill against naive implementation.
        let mut rng = StdRng::seed_from_u64(0xdeadbeef);
        for _ in 0..100 {
            let x = rng.gen();
            let y = rng.gen();
            assert_eq!(naive_pext64(x, y), pext64_polyfill(x, y, y.count_ones()));

            // Test all-zeros and all-ones.
            assert_eq!(naive_pext64(0, y), pext64_polyfill(0, y, y.count_ones()));
            assert_eq!(
                naive_pext64(u64::MAX, y),
                pext64_polyfill(u64::MAX, y, y.count_ones())
            );
            assert_eq!(naive_pext64(x, 0), pext64_polyfill(x, 0, 0));
            assert_eq!(naive_pext64(x, u64::MAX), pext64_polyfill(x, u64::MAX, 64));

            // Test low popcount mask.
            let popcnt = rng.gen_range(0..=8);
            // Not perfect (can generate same bit twice) but it'll do.
            let mask = (0..popcnt).map(|_| 1 << rng.gen_range(0..64)).sum();
            assert_eq!(
                naive_pext64(x, mask),
                pext64_polyfill(x, mask, mask.count_ones())
            );
        }
    }
}