1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
use crate::prelude::*;
use ndarray::prelude::*;

impl<T> ChunkedArray<T>
where
    T: PolarsNumericType,
{
    /// If data is aligned in a single chunk and has no Null values a zero copy view is returned
    /// as an `ndarray`
    #[cfg_attr(docsrs, doc(cfg(feature = "ndarray")))]
    pub fn to_ndarray(&self) -> Result<ArrayView1<T::Native>> {
        let slice = self.cont_slice()?;
        Ok(aview1(slice))
    }
}

impl ListChunked {
    /// If all nested `Series` have the same length, a 2 dimensional `ndarray::Array` is returned.
    #[cfg_attr(docsrs, doc(cfg(feature = "ndarray")))]
    // allow deprecated for now. Fix when removed
    #[allow(deprecated)]
    pub fn to_ndarray<N>(&self) -> Result<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        if self.null_count() != 0 {
            Err(PolarsError::HasNullValues(
                "Creation of ndarray with null values is not supported.".into(),
            ))
        } else {
            let mut iter = self.into_no_null_iter();

            let mut ndarray;
            let width;

            // first iteration determine the size
            if let Some(series) = iter.next() {
                width = series.len();

                ndarray = unsafe { ndarray::Array::uninitialized((self.len(), series.len())) };

                let series = series.cast(&N::get_dtype())?;
                let ca = series.unpack::<N>()?;
                let a = ca.to_ndarray()?;
                let mut row = ndarray.slice_mut(s![0, ..]);
                row.assign(&a);

                for series in iter {
                    if series.len() != width {
                        return Err(PolarsError::ShapeMisMatch(
                            "Could not create a 2D array. Series have different lengths".into(),
                        ));
                    }
                    let series = series.cast(&N::get_dtype())?;
                    let ca = series.unpack::<N>()?;
                    let a = ca.to_ndarray()?;
                    let mut row = ndarray.slice_mut(s![0, ..]);
                    row.assign(&a)
                }
                Ok(ndarray)
            } else {
                Err(PolarsError::NoData(
                    "cannot create ndarray of empty ListChunked".into(),
                ))
            }
        }
    }
}

impl DataFrame {
    /// Create a 2D `ndarray::Array` from this `DataFrame`. This requires all columns in the
    /// `DataFrame` to be non-null and numeric. They will be casted to the same data type
    /// (if they aren't already).
    ///
    /// ```rust
    /// use polars_core::prelude::*;
    /// let a = UInt32Chunked::new_from_slice("a", &[1, 2, 3]).into_series();
    /// let b = Float64Chunked::new_from_slice("b", &[10., 8., 6.]).into_series();
    ///
    /// let df = DataFrame::new(vec![a, b]).unwrap();
    /// let ndarray = df.to_ndarray::<Float64Type>().unwrap();
    /// println!("{:?}", ndarray);
    /// ```
    /// Outputs:
    /// ```text
    /// [[1.0, 10.0],
    ///  [2.0, 8.0],
    ///  [3.0, 6.0]], shape=[3, 2], strides=[2, 1], layout=C (0x1), const ndim=2/
    /// ```
    #[cfg_attr(docsrs, doc(cfg(feature = "ndarray")))]
    pub fn to_ndarray<N>(&self) -> Result<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        let mut ndarr = Array2::zeros(self.shape());
        for (col_idx, series) in self.get_columns().iter().enumerate() {
            if series.null_count() != 0 {
                return Err(PolarsError::HasNullValues(
                    "Creation of ndarray with null values is not supported.".into(),
                ));
            }
            // this is an Arc clone if already of type N
            let series = series.cast(&N::get_dtype())?;
            let ca = series.unpack::<N>()?;

            ca.into_no_null_iter()
                .enumerate()
                .for_each(|(row_idx, val)| {
                    ndarr[[row_idx, col_idx]] = val;
                })
        }
        Ok(ndarr)
    }
}