1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
use super::*;
use crate::frame::select::Selection;
use crate::utils::split_df;
use crate::vector_hasher::df_rows_to_hashes_threaded;
use crate::POOL;
use rayon::prelude::*;

use crate::frame::hash_join::{get_hash_tbl_threaded_join_partitioned, multiple_keys as mk};

fn find_latest_leq<T>(left_val: T, right_asof: &[T], subset_idx: &[u32]) -> Option<u32>
where
    T: Copy + PartialOrd,
{
    subset_idx
        .iter()
        .rev()
        .find(|&&i| {
            debug_assert!((i as usize) < right_asof.len());
            // Safety:
            // idx are in bounds
            unsafe { *right_asof.get_unchecked(i as usize) <= left_val }
        })
        .copied()
}

// TODO! add faster implementation that has a single groupby key
fn asof_join_by<T>(
    a: &DataFrame,
    b: &DataFrame,
    left_asof: &ChunkedArray<T>,
    right_asof: &ChunkedArray<T>,
) -> Vec<Option<u32>>
where
    T: PolarsNumericType,
{
    let left_asof = left_asof.rechunk();
    let left_asof = left_asof.cont_slice().unwrap();

    let right_asof = right_asof.rechunk();
    let right_asof = right_asof.cont_slice().unwrap();

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None);
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state));

    let hash_tbls = mk::create_build_table(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    let offsets = mk::get_offsets(&probe_hashes);

    // next we probe the other relation
    // code duplication is because we want to only do the swap check once
    POOL.install(|| {
        probe_hashes
            .into_par_iter()
            .zip(offsets)
            .map(|(probe_hashes, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;
                let mut results =
                    Vec::with_capacity(probe_hashes.len() / POOL.current_num_threads());
                let local_offset = offset;

                let mut idx_a = local_offset as u32;
                for probe_hashes in probe_hashes.data_views() {
                    for (idx, &h) in probe_hashes.iter().enumerate() {
                        debug_assert!(idx + offset < left_asof.len());
                        // Safety:
                        // idx are in bounds
                        let left_val = unsafe { *left_asof.get_unchecked(idx + offset) };

                        // probe table that contains the hashed value
                        let current_probe_table = unsafe {
                            get_hash_tbl_threaded_join_partitioned(h, hash_tbls, n_tables)
                        };

                        let entry = current_probe_table.raw_entry().from_hash(h, |idx_hash| {
                            let idx_b = idx_hash.idx;
                            // Safety:
                            // indices in a join operation are always in bounds.
                            unsafe { mk::compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
                        });

                        match entry {
                            // left and right matches
                            Some((_, indexes_b)) => {
                                results.push(find_latest_leq(left_val, right_asof, indexes_b))
                            }
                            // only left values, right = null
                            None => results.push(None),
                        }
                        idx_a += 1;
                    }
                }

                results
            })
            .flatten()
            .collect()
    })
}

impl DataFrame {
    /// This is similar to a left-join except that we match on nearest key rather than equal keys.
    /// The keys must be sorted to perform an asof join. This is a special implementation of an asof join
    /// that searches for the nearest keys within a subgroup set by `by`.
    #[cfg_attr(docsrs, doc(cfg(feature = "asof_join")))]
    pub fn join_asof_by<'a, S, J>(
        &self,
        other: &DataFrame,
        left_on: &str,
        right_on: &str,
        left_by: S,
        right_by: S,
    ) -> Result<DataFrame>
    where
        S: Selection<'a, J>,
    {
        let left_asof = self.column(left_on)?;
        let right_asof = other.column(right_on)?;
        let right_asof_name = right_asof.name();

        let left_by = self.select(left_by)?;
        let right_by = other.select(right_by)?;

        let right_join_tuples = if left_asof.bit_repr_is_large() {
            let left_asof = left_asof.cast(&DataType::Int64)?;
            let right_asof = right_asof.cast(&DataType::Int64)?;
            let left_asof = left_asof.i64().unwrap();
            let right_asof = right_asof.i64().unwrap();

            asof_join_by(&left_by, &right_by, left_asof, right_asof)
        } else {
            let left_asof = left_asof.cast(&DataType::Int32)?;
            let right_asof = right_asof.cast(&DataType::Int32)?;
            let left_asof = left_asof.i32().unwrap();
            let right_asof = right_asof.i32().unwrap();
            asof_join_by(&left_by, &right_by, left_asof, right_asof)
        };

        let mut drop_these = right_by.get_column_names();
        drop_these.push(right_asof_name);

        let cols = other
            .get_columns()
            .iter()
            .filter_map(|s| {
                if drop_these.contains(&s.name()) {
                    None
                } else {
                    Some(s.clone())
                }
            })
            .collect();
        let other = DataFrame::new_no_checks(cols);

        // Safety:
        // join tuples are in bounds
        let right_df = unsafe {
            other.take_opt_iter_unchecked(
                right_join_tuples
                    .into_iter()
                    .map(|opt_idx| opt_idx.map(|idx| idx as usize)),
            )
        };

        self.finish_join(self.clone(), right_df, None)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_asof_by() -> Result<()> {
        let a = df![
        "a" => [-1, 2, 3, 3, 3, 4],
        "b" => ["a", "b", "c", "d", "e", "f"]
        ]?;

        let b = df![
         "a" => [1, 2, 3, 3],
            "b" => ["a", "b", "c", "d"],
            "right_vals" => [1, 2, 3, 4]
        ]?;

        let out = a.join_asof_by(&b, "a", "a", "b", "b")?;
        assert_eq!(out.get_column_names(), &["a", "b", "right_vals"]);
        let out = out.column("right_vals").unwrap();
        let out = out.i32().unwrap();
        assert_eq!(
            Vec::from(out),
            &[None, Some(2), Some(3), Some(4), None, None]
        );
        Ok(())
    }

    #[test]
    fn test_asof_by2() -> Result<()> {
        let trades = df![
            "time" => [1464183000023i64, 1464183000038, 1464183000048, 1464183000048, 1464183000048],
            "ticker" => ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
            "bid" => [51.95, 51.95, 720.77, 720.92, 98.0]
        ]?;

        let quotes = df![
                   "time" => [1464183000023i64,
        1464183000023,
        1464183000030,
        1464183000041,
        1464183000048,
        1464183000049,
        1464183000072,
        1464183000075],
                   "ticker" => ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
                   "bid" => [720.5, 51.95, 51.97, 51.99, 720.5, 97.99, 720.5, 52.01]

               ]?;

        let out = trades.join_asof_by(&quotes, "time", "time", "ticker", "ticker")?;
        let a = out.column("bid_right").unwrap();
        let a = a.f64().unwrap();

        assert_eq!(
            Vec::from(a),
            &[Some(51.95), Some(51.97), Some(720.5), Some(720.5), None]
        );

        Ok(())
    }
}