1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
use crate::datatypes::UInt64Chunked;
use crate::prelude::*;
use crate::utils::arrow::array::Array;
use crate::POOL;
use ahash::{CallHasher, RandomState};
use arrow::bitmap::utils::get_bit_unchecked;
use hashbrown::{hash_map::RawEntryMut, HashMap};
use polars_arrow::utils::CustomIterTools;
use rayon::prelude::*;
use std::convert::TryInto;
use std::hash::{BuildHasher, BuildHasherDefault, Hash, Hasher};

// Read more:
//  https://www.cockroachlabs.com/blog/vectorized-hash-joiner/
//  http://myeyesareblind.com/2017/02/06/Combine-hash-values/

pub trait VecHash {
    /// Compute the hash for all values in the array.
    ///
    /// This currently only works with the AHash RandomState hasher builder.
    fn vec_hash(&self, _random_state: RandomState) -> AlignedVec<u64> {
        unimplemented!()
    }

    fn vec_hash_combine(&self, _random_state: RandomState, _hashes: &mut [u64]) {
        unimplemented!()
    }
}

pub(crate) fn get_null_hash_value(random_state: RandomState) -> u64 {
    // we just start with a large prime number and hash that twice
    // to get a constant hash value for null/None
    let mut hasher = random_state.build_hasher();
    3188347919usize.hash(&mut hasher);
    let first = hasher.finish();
    let mut hasher = random_state.build_hasher();
    first.hash(&mut hasher);
    hasher.finish()
}

impl<T> VecHash for ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: Hash + CallHasher,
{
    fn vec_hash(&self, random_state: RandomState) -> AlignedVec<u64> {
        // Note that we don't use the no null branch! This can break in unexpected ways.
        // for instance with threading we split an array in n_threads, this may lead to
        // splits that have no nulls and splits that have nulls. Then one array is hashed with
        // Option<T> and the other array with T.
        // Meaning that they cannot be compared. By always hashing on Option<T> the random_state is
        // the only deterministic seed.
        let mut av = AlignedVec::with_capacity(self.len());

        self.downcast_iter().for_each(|arr| {
            av.extend(
                arr.values()
                    .as_slice()
                    .iter()
                    .map(|v| T::Native::get_hash(v, &random_state)),
            );
        });

        let null_h = get_null_hash_value(random_state);
        let hashes = av.as_mut_slice();

        let mut offset = 0;
        self.downcast_iter().for_each(|arr| {
            if let Some(validity) = arr.validity() {
                let slice = validity.as_slice().0;
                (0..validity.len())
                    .map(|i| unsafe { get_bit_unchecked(slice, i) })
                    .zip(&mut hashes[offset..])
                    .for_each(|(valid, h)| {
                        if !valid {
                            *h = null_h;
                        }
                    })
            }
            offset += arr.len();
        });

        av
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) {
        let null_h = get_null_hash_value(random_state.clone());

        let mut offset = 0;
        self.downcast_iter().for_each(|arr| {
            match arr.null_count() {
                0 => arr
                    .values()
                    .as_slice()
                    .iter()
                    .zip(&mut hashes[offset..])
                    .for_each(|(v, h)| {
                        let l = T::Native::get_hash(v, &random_state);
                        *h = boost_hash_combine(l, *h)
                    }),
                _ => arr
                    .iter()
                    .zip(&mut hashes[offset..])
                    .for_each(|(opt_v, h)| match opt_v {
                        Some(v) => {
                            let l = T::Native::get_hash(v, &random_state);
                            *h = boost_hash_combine(l, *h)
                        }
                        None => {
                            *h = boost_hash_combine(null_h, *h);
                        }
                    }),
            }
            offset += arr.len();
        });
    }
}

impl VecHash for Utf8Chunked {
    fn vec_hash(&self, random_state: RandomState) -> AlignedVec<u64> {
        let null_h = get_null_hash_value(random_state.clone());
        let mut av = AlignedVec::with_capacity(self.len());
        self.downcast_iter().for_each(|arr| {
            av.extend(arr.into_iter().map(|opt_v| match opt_v {
                Some(v) => str::get_hash(v, &random_state),
                None => null_h,
            }))
        });
        av
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) {
        let null_h = get_null_hash_value(random_state.clone());
        self.apply_to_slice(
            |opt_v, h| {
                let l = match opt_v {
                    Some(v) => str::get_hash(v, &random_state),
                    None => null_h,
                };
                boost_hash_combine(l, *h)
            },
            hashes,
        )
    }
}

impl VecHash for BooleanChunked {
    fn vec_hash(&self, random_state: RandomState) -> AlignedVec<u64> {
        let mut av = AlignedVec::with_capacity(self.len());
        self.downcast_iter().for_each(|arr| {
            av.extend(arr.into_iter().map(|opt_v| {
                let mut hasher = random_state.build_hasher();
                opt_v.hash(&mut hasher);
                hasher.finish()
            }))
        });
        av
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) {
        self.apply_to_slice(
            |opt_v, h| {
                let mut hasher = random_state.build_hasher();
                opt_v.hash(&mut hasher);
                boost_hash_combine(hasher.finish(), *h)
            },
            hashes,
        )
    }
}

impl VecHash for Float32Chunked {
    fn vec_hash(&self, random_state: RandomState) -> AlignedVec<u64> {
        self.bit_repr_small().vec_hash(random_state)
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) {
        self.bit_repr_small().vec_hash_combine(random_state, hashes)
    }
}
impl VecHash for Float64Chunked {
    fn vec_hash(&self, random_state: RandomState) -> AlignedVec<u64> {
        self.bit_repr_large().vec_hash(random_state)
    }
    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) {
        self.bit_repr_large().vec_hash_combine(random_state, hashes)
    }
}

impl VecHash for ListChunked {}

#[cfg(feature = "object")]
impl<T> VecHash for ObjectChunked<T>
where
    T: PolarsObject,
{
    fn vec_hash(&self, random_state: RandomState) -> AlignedVec<u64> {
        // Note that we don't use the no null branch! This can break in unexpected ways.
        // for instance with threading we split an array in n_threads, this may lead to
        // splits that have no nulls and splits that have nulls. Then one array is hashed with
        // Option<T> and the other array with T.
        // Meaning that they cannot be compared. By always hashing on Option<T> the random_state is
        // the only deterministic seed.
        let mut av = AlignedVec::with_capacity(self.len());

        self.downcast_iter().for_each(|arr| {
            av.extend(arr.into_iter().map(|opt_v| {
                let mut hasher = random_state.build_hasher();
                opt_v.hash(&mut hasher);
                hasher.finish()
            }))
        });
        av
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) {
        self.apply_to_slice(
            |opt_v, h| {
                let mut hasher = random_state.build_hasher();
                opt_v.hash(&mut hasher);
                boost_hash_combine(hasher.finish(), *h)
            },
            hashes,
        )
    }
}

// Used to to get a u64 from the hashing keys
// We need to modify the hashing algorithm to use the hash for this and only compute the hash once.
pub(crate) trait AsU64 {
    #[allow(clippy::wrong_self_convention)]
    fn as_u64(self) -> u64;
}

impl AsU64 for u32 {
    fn as_u64(self) -> u64 {
        self as u64
    }
}

impl AsU64 for u64 {
    fn as_u64(self) -> u64 {
        self
    }
}

impl AsU64 for Option<u32> {
    fn as_u64(self) -> u64 {
        match self {
            Some(v) => v as u64,
            // just a number
            None => u64::MAX,
        }
    }
}

impl AsU64 for Option<u64> {
    fn as_u64(self) -> u64 {
        self.unwrap_or(u64::MAX)
    }
}

impl AsU64 for [u8; 9] {
    fn as_u64(self) -> u64 {
        // the last byte includes the null information.
        // that one is skipped. Worst thing that could happen is unbalanced partition.
        u64::from_ne_bytes(self[..8].try_into().unwrap())
    }
}
const BUILD_HASHER: RandomState = RandomState::with_seeds(0, 0, 0, 0);
impl AsU64 for [u8; 17] {
    fn as_u64(self) -> u64 {
        <[u8]>::get_hash(&self, &BUILD_HASHER)
    }
}

impl AsU64 for [u8; 13] {
    fn as_u64(self) -> u64 {
        <[u8]>::get_hash(&self, &BUILD_HASHER)
    }
}

#[derive(Default)]
pub struct IdHasher {
    hash: u64,
}

impl Hasher for IdHasher {
    fn finish(&self) -> u64 {
        self.hash
    }

    fn write(&mut self, _bytes: &[u8]) {
        unreachable!("IdHasher should only be used for integer keys <= 64 bit precision")
    }

    fn write_u32(&mut self, i: u32) {
        self.write_u64(i as u64)
    }

    fn write_u64(&mut self, i: u64) {
        self.hash = i;
    }

    fn write_i32(&mut self, i: i32) {
        // Safety:
        // same number of bits
        unsafe { self.write_u32(std::mem::transmute::<i32, u32>(i)) }
    }

    fn write_i64(&mut self, i: i64) {
        // Safety:
        // same number of bits
        unsafe { self.write_u64(std::mem::transmute::<i64, u64>(i)) }
    }
}

pub type IdBuildHasher = BuildHasherDefault<IdHasher>;

#[derive(Debug)]
/// Contains an idx of a row in a DataFrame and the precomputed hash of that row.
/// That hash still needs to be used to create another hash to be able to resize hashmaps without
/// accidental quadratic behavior. So do not use an Identity function!
pub(crate) struct IdxHash {
    // idx in row of Series, DataFrame
    pub(crate) idx: u32,
    // precomputed hash of T
    hash: u64,
}

impl Hash for IdxHash {
    fn hash<H: Hasher>(&self, state: &mut H) {
        state.write_u64(self.hash)
    }
}

impl IdxHash {
    #[inline]
    pub(crate) fn new(idx: u32, hash: u64) -> Self {
        IdxHash { idx, hash }
    }
}

/// Contains a ptr to the string slice an the precomputed hash of that string.
/// During rehashes, we will rehash the hash instead of the string, that makes rehashing
/// cheap and allows cache coherent small hash tables.
#[derive(Eq, Copy, Clone)]
pub(crate) struct StrHash<'a> {
    str: Option<&'a str>,
    hash: u64,
}

impl<'a> Hash for StrHash<'a> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        state.write_u64(self.hash)
    }
}

impl<'a> StrHash<'a> {
    pub(crate) fn new(s: Option<&'a str>, hash: u64) -> Self {
        Self { str: s, hash }
    }
}

impl<'a> PartialEq for StrHash<'a> {
    fn eq(&self, other: &Self) -> bool {
        self.str == other.str
    }
}

impl<'a> AsU64 for StrHash<'a> {
    fn as_u64(self) -> u64 {
        self.hash
    }
}

#[inline]
/// For partitions that are a power of 2 we can use a bitshift instead of a modulo.
pub(crate) fn this_partition(h: u64, thread_no: u64, n_partitions: u64) -> bool {
    // n % 2^i = n & (2^i - 1)
    (h.wrapping_add(thread_no)) & n_partitions.wrapping_sub(1) == 0
}

pub(crate) fn prepare_hashed_relation_threaded<T, I>(
    iters: Vec<I>,
) -> Vec<HashMap<T, (bool, Vec<u32>), RandomState>>
where
    I: Iterator<Item = T> + Send + TrustedLen,
    T: Send + Hash + Eq + Sync + Copy,
{
    let n_partitions = iters.len();
    assert!(n_partitions.is_power_of_two());

    let (hashes_and_keys, build_hasher) = create_hash_and_keys_threaded_vectorized(iters, None);

    // We will create a hashtable in every thread.
    // We use the hash to partition the keys to the matching hashtable.
    // Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
    POOL.install(|| {
        (0..n_partitions).into_par_iter().map(|partition_no| {
            let build_hasher = build_hasher.clone();
            let hashes_and_keys = &hashes_and_keys;
            let partition_no = partition_no as u64;
            let mut hash_tbl: HashMap<T, (bool, Vec<u32>), RandomState> =
                HashMap::with_hasher(build_hasher);

            let n_threads = n_partitions as u64;
            let mut offset = 0;
            for hashes_and_keys in hashes_and_keys {
                let len = hashes_and_keys.len();
                hashes_and_keys
                    .iter()
                    .enumerate()
                    .for_each(|(idx, (h, k))| {
                        let idx = idx as u32;
                        // partition hashes by thread no.
                        // So only a part of the hashes go to this hashmap
                        if this_partition(*h, partition_no, n_threads) {
                            let idx = idx + offset;
                            let entry = hash_tbl
                                .raw_entry_mut()
                                // uses the key to check equality to find and entry
                                .from_key_hashed_nocheck(*h, k);

                            match entry {
                                RawEntryMut::Vacant(entry) => {
                                    entry.insert_hashed_nocheck(*h, *k, (false, vec![idx]));
                                }
                                RawEntryMut::Occupied(mut entry) => {
                                    let (_k, v) = entry.get_key_value_mut();
                                    v.1.push(idx);
                                }
                            }
                        }
                    });

                offset += len as u32;
            }
            hash_tbl
        })
    })
    .collect()
}

pub(crate) fn create_hash_and_keys_threaded_vectorized<I, T>(
    iters: Vec<I>,
    build_hasher: Option<RandomState>,
) -> (Vec<Vec<(u64, T)>>, RandomState)
where
    I: IntoIterator<Item = T> + Send,
    I::IntoIter: TrustedLen,
    T: Send + Hash + Eq,
{
    let build_hasher = build_hasher.unwrap_or_default();
    let hashes = POOL.install(|| {
        iters
            .into_par_iter()
            .map(|iter| {
                // create hashes and keys
                iter.into_iter()
                    .map(|val| {
                        let mut hasher = build_hasher.build_hasher();
                        val.hash(&mut hasher);
                        (hasher.finish(), val)
                    })
                    .collect_trusted::<Vec<_>>()
            })
            .collect()
    });
    (hashes, build_hasher)
}

// hash combine from c++' boost lib
#[inline]
pub(crate) fn boost_hash_combine(l: u64, r: u64) -> u64 {
    l ^ r.wrapping_add(0x9e3779b9u64.wrapping_add(l << 6).wrapping_add(r >> 2))
}

pub(crate) fn df_rows_to_hashes_threaded(
    keys: &[DataFrame],
    hasher_builder: Option<RandomState>,
) -> (Vec<UInt64Chunked>, RandomState) {
    let hasher_builder = hasher_builder.unwrap_or_default();

    let hashes = POOL.install(|| {
        keys.into_par_iter()
            .map(|df| {
                let hb = hasher_builder.clone();
                let (ca, _) = df_rows_to_hashes(df, Some(hb));
                ca
            })
            .collect()
    });
    (hashes, hasher_builder)
}

pub(crate) fn df_rows_to_hashes(
    keys: &DataFrame,
    build_hasher: Option<RandomState>,
) -> (UInt64Chunked, RandomState) {
    let build_hasher = build_hasher.unwrap_or_default();

    let mut iter = keys.iter();
    let first = iter.next().expect("at least one key");
    let mut hashes = first.vec_hash(build_hasher.clone());
    let hslice = hashes.as_mut_slice();

    for keys in iter {
        keys.vec_hash_combine(build_hasher.clone(), hslice);
    }

    let chunks = vec![Arc::new(PrimitiveArray::from_data(
        ArrowDataType::UInt64,
        hashes.into(),
        None,
    )) as ArrayRef];
    (UInt64Chunked::new_from_chunks("", chunks), build_hasher)
}