polars_core/chunked_array/ops/
row_encode.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
use arrow::compute::utils::combine_validities_and_many;
use polars_row::{convert_columns, EncodingField, RowsEncoded};
use rayon::prelude::*;

use crate::prelude::*;
use crate::utils::_split_offsets;
use crate::POOL;

pub(crate) fn convert_series_for_row_encoding(s: &Series) -> PolarsResult<Series> {
    use DataType::*;
    let out = match s.dtype() {
        #[cfg(feature = "dtype-categorical")]
        Categorical(_, _) | Enum(_, _) => s.rechunk(),
        Binary | Boolean => s.clone(),
        BinaryOffset => s.clone(),
        String => s.str().unwrap().as_binary().into_series(),
        #[cfg(feature = "dtype-struct")]
        Struct(_) => {
            let ca = s.struct_().unwrap();
            let new_fields = ca
                .fields_as_series()
                .iter()
                .map(convert_series_for_row_encoding)
                .collect::<PolarsResult<Vec<_>>>()?;
            let mut out =
                StructChunked::from_series(ca.name().clone(), ca.len(), new_fields.iter())?;
            out.zip_outer_validity(ca);
            out.into_series()
        },
        // we could fallback to default branch, but decimal is not numeric dtype for now, so explicit here
        #[cfg(feature = "dtype-decimal")]
        Decimal(_, _) => s.clone(),
        List(inner) if !inner.is_nested() => s.clone(),
        Null => s.clone(),
        _ => {
            let phys = s.to_physical_repr().into_owned();
            polars_ensure!(
                phys.dtype().is_numeric(),
                InvalidOperation: "cannot sort column of dtype `{}`", s.dtype()
            );
            phys
        },
    };
    Ok(out)
}

pub fn _get_rows_encoded_compat_array(by: &Series) -> PolarsResult<ArrayRef> {
    let by = convert_series_for_row_encoding(by)?;
    let by = by.rechunk();

    let out = match by.dtype() {
        #[cfg(feature = "dtype-categorical")]
        DataType::Categorical(_, _) | DataType::Enum(_, _) => {
            let ca = by.categorical().unwrap();
            if ca.uses_lexical_ordering() {
                by.to_arrow(0, CompatLevel::newest())
            } else {
                ca.physical().chunks[0].clone()
            }
        },
        // Take physical
        _ => by.chunks()[0].clone(),
    };
    Ok(out)
}

pub fn encode_rows_vertical_par_unordered(by: &[Series]) -> PolarsResult<BinaryOffsetChunked> {
    let n_threads = POOL.current_num_threads();
    let len = by[0].len();
    let splits = _split_offsets(len, n_threads);

    let chunks = splits.into_par_iter().map(|(offset, len)| {
        let sliced = by
            .iter()
            .map(|s| s.slice(offset as i64, len))
            .collect::<Vec<_>>();
        let rows = _get_rows_encoded_unordered(&sliced)?;
        Ok(rows.into_array())
    });
    let chunks = POOL.install(|| chunks.collect::<PolarsResult<Vec<_>>>());

    Ok(BinaryOffsetChunked::from_chunk_iter(
        PlSmallStr::EMPTY,
        chunks?,
    ))
}

// Almost the same but broadcast nulls to the row-encoded array.
pub fn encode_rows_vertical_par_unordered_broadcast_nulls(
    by: &[Series],
) -> PolarsResult<BinaryOffsetChunked> {
    let n_threads = POOL.current_num_threads();
    let len = by[0].len();
    let splits = _split_offsets(len, n_threads);

    let chunks = splits.into_par_iter().map(|(offset, len)| {
        let sliced = by
            .iter()
            .map(|s| s.slice(offset as i64, len))
            .collect::<Vec<_>>();
        let rows = _get_rows_encoded_unordered(&sliced)?;

        let validities = sliced
            .iter()
            .flat_map(|s| {
                let s = s.rechunk();
                #[allow(clippy::unnecessary_to_owned)]
                s.chunks()
                    .to_vec()
                    .into_iter()
                    .map(|arr| arr.validity().cloned())
            })
            .collect::<Vec<_>>();

        let validity = combine_validities_and_many(&validities);
        Ok(rows.into_array().with_validity_typed(validity))
    });
    let chunks = POOL.install(|| chunks.collect::<PolarsResult<Vec<_>>>());

    Ok(BinaryOffsetChunked::from_chunk_iter(
        PlSmallStr::EMPTY,
        chunks?,
    ))
}

pub fn encode_rows_unordered(by: &[Series]) -> PolarsResult<BinaryOffsetChunked> {
    let rows = _get_rows_encoded_unordered(by)?;
    Ok(BinaryOffsetChunked::with_chunk(
        PlSmallStr::EMPTY,
        rows.into_array(),
    ))
}

pub fn _get_rows_encoded_unordered(by: &[Series]) -> PolarsResult<RowsEncoded> {
    let mut cols = Vec::with_capacity(by.len());
    let mut fields = Vec::with_capacity(by.len());
    for by in by {
        let arr = _get_rows_encoded_compat_array(by)?;
        let field = EncodingField::new_unsorted();
        match arr.dtype() {
            // Flatten the struct fields.
            ArrowDataType::Struct(_) => {
                let arr = arr.as_any().downcast_ref::<StructArray>().unwrap();
                for arr in arr.values() {
                    cols.push(arr.clone() as ArrayRef);
                    fields.push(field)
                }
            },
            _ => {
                cols.push(arr);
                fields.push(field)
            },
        }
    }
    Ok(convert_columns(&cols, &fields))
}

pub fn _get_rows_encoded(
    by: &[Column],
    descending: &[bool],
    nulls_last: &[bool],
) -> PolarsResult<RowsEncoded> {
    debug_assert_eq!(by.len(), descending.len());
    debug_assert_eq!(by.len(), nulls_last.len());

    let mut cols = Vec::with_capacity(by.len());
    let mut fields = Vec::with_capacity(by.len());

    for ((by, desc), null_last) in by.iter().zip(descending).zip(nulls_last) {
        let by = by.as_materialized_series();
        let arr = _get_rows_encoded_compat_array(by)?;
        let sort_field = EncodingField {
            descending: *desc,
            nulls_last: *null_last,
            no_order: false,
        };
        match arr.dtype() {
            // Flatten the struct fields.
            ArrowDataType::Struct(_) => {
                let arr = arr.as_any().downcast_ref::<StructArray>().unwrap();
                let arr = arr.propagate_nulls();
                for value_arr in arr.values() {
                    cols.push(value_arr.clone() as ArrayRef);
                    fields.push(sort_field);
                }
            },
            _ => {
                cols.push(arr);
                fields.push(sort_field);
            },
        }
    }
    Ok(convert_columns(&cols, &fields))
}

pub fn _get_rows_encoded_ca(
    name: PlSmallStr,
    by: &[Column],
    descending: &[bool],
    nulls_last: &[bool],
) -> PolarsResult<BinaryOffsetChunked> {
    _get_rows_encoded(by, descending, nulls_last)
        .map(|rows| BinaryOffsetChunked::with_chunk(name, rows.into_array()))
}

pub fn _get_rows_encoded_arr(
    by: &[Column],
    descending: &[bool],
    nulls_last: &[bool],
) -> PolarsResult<BinaryArray<i64>> {
    _get_rows_encoded(by, descending, nulls_last).map(|rows| rows.into_array())
}

pub fn _get_rows_encoded_ca_unordered(
    name: PlSmallStr,
    by: &[Series],
) -> PolarsResult<BinaryOffsetChunked> {
    _get_rows_encoded_unordered(by)
        .map(|rows| BinaryOffsetChunked::with_chunk(name, rows.into_array()))
}