polars_core/frame/group_by/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
use std::fmt::{Debug, Display, Formatter};
use std::hash::Hash;

use num_traits::NumCast;
use polars_utils::format_pl_smallstr;
use polars_utils::hashing::DirtyHash;
use rayon::prelude::*;

use self::hashing::*;
use crate::prelude::*;
use crate::utils::{_set_partition_size, accumulate_dataframes_vertical};
use crate::POOL;

pub mod aggregations;
pub mod expr;
pub(crate) mod hashing;
mod into_groups;
mod perfect;
mod proxy;

pub use into_groups::*;
pub use proxy::*;

use crate::chunked_array::ops::row_encode::{
    encode_rows_unordered, encode_rows_vertical_par_unordered,
};

impl DataFrame {
    pub fn group_by_with_series(
        &self,
        mut by: Vec<Column>,
        multithreaded: bool,
        sorted: bool,
    ) -> PolarsResult<GroupBy> {
        polars_ensure!(
            !by.is_empty(),
            ComputeError: "at least one key is required in a group_by operation"
        );
        let minimal_by_len = by.iter().map(|s| s.len()).min().expect("at least 1 key");
        let df_height = self.height();

        // we only throw this error if self.width > 0
        // so that we can still call this on a dummy dataframe where we provide the keys
        if (minimal_by_len != df_height) && (self.width() > 0) {
            polars_ensure!(
                minimal_by_len == 1,
                ShapeMismatch: "series used as keys should have the same length as the DataFrame"
            );
            for by_key in by.iter_mut() {
                if by_key.len() == minimal_by_len {
                    *by_key = by_key.new_from_index(0, df_height)
                }
            }
        };

        let groups = if by.len() == 1 {
            let column = &by[0];
            column
                .as_materialized_series()
                .group_tuples(multithreaded, sorted)
        } else if by.iter().any(|s| s.dtype().is_object()) {
            #[cfg(feature = "object")]
            {
                let mut df = DataFrame::new(by.clone()).unwrap();
                let n = df.height();
                let rows = df.to_av_rows();
                let iter = (0..n).map(|i| rows.get(i));
                Ok(group_by(iter, sorted))
            }
            #[cfg(not(feature = "object"))]
            {
                unreachable!()
            }
        } else {
            // Skip null dtype.
            let by = by
                .iter()
                .filter(|s| !s.dtype().is_null())
                .map(|c| c.as_materialized_series().clone())
                .collect::<Vec<_>>();
            if by.is_empty() {
                let groups = if self.is_empty() {
                    vec![]
                } else {
                    vec![[0, self.height() as IdxSize]]
                };
                Ok(GroupsProxy::Slice {
                    groups,
                    rolling: false,
                })
            } else {
                let rows = if multithreaded {
                    encode_rows_vertical_par_unordered(&by)
                } else {
                    encode_rows_unordered(&by)
                }?
                .into_series();
                rows.group_tuples(multithreaded, sorted)
            }
        };
        Ok(GroupBy::new(self, by, groups?, None))
    }

    /// Group DataFrame using a Series column.
    ///
    /// # Example
    ///
    /// ```
    /// use polars_core::prelude::*;
    /// fn group_by_sum(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["column_name"])?
    ///     .select(["agg_column_name"])
    ///     .sum()
    /// }
    /// ```
    pub fn group_by<I, S>(&self, by: I) -> PolarsResult<GroupBy>
    where
        I: IntoIterator<Item = S>,
        S: Into<PlSmallStr>,
    {
        let selected_keys = self.select_columns(by)?;
        self.group_by_with_series(selected_keys, true, false)
    }

    /// Group DataFrame using a Series column.
    /// The groups are ordered by their smallest row index.
    pub fn group_by_stable<I, S>(&self, by: I) -> PolarsResult<GroupBy>
    where
        I: IntoIterator<Item = S>,
        S: Into<PlSmallStr>,
    {
        let selected_keys = self.select_columns(by)?;
        self.group_by_with_series(selected_keys, true, true)
    }
}

/// Returned by a group_by operation on a DataFrame. This struct supports
/// several aggregations.
///
/// Until described otherwise, the examples in this struct are performed on the following DataFrame:
///
/// ```ignore
/// use polars_core::prelude::*;
///
/// let dates = &[
/// "2020-08-21",
/// "2020-08-21",
/// "2020-08-22",
/// "2020-08-23",
/// "2020-08-22",
/// ];
/// // date format
/// let fmt = "%Y-%m-%d";
/// // create date series
/// let s0 = DateChunked::parse_from_str_slice("date", dates, fmt)
///         .into_series();
/// // create temperature series
/// let s1 = Series::new("temp".into(), [20, 10, 7, 9, 1]);
/// // create rain series
/// let s2 = Series::new("rain".into(), [0.2, 0.1, 0.3, 0.1, 0.01]);
/// // create a new DataFrame
/// let df = DataFrame::new(vec![s0, s1, s2]).unwrap();
/// println!("{:?}", df);
/// ```
///
/// Outputs:
///
/// ```text
/// +------------+------+------+
/// | date       | temp | rain |
/// | ---        | ---  | ---  |
/// | Date       | i32  | f64  |
/// +============+======+======+
/// | 2020-08-21 | 20   | 0.2  |
/// +------------+------+------+
/// | 2020-08-21 | 10   | 0.1  |
/// +------------+------+------+
/// | 2020-08-22 | 7    | 0.3  |
/// +------------+------+------+
/// | 2020-08-23 | 9    | 0.1  |
/// +------------+------+------+
/// | 2020-08-22 | 1    | 0.01 |
/// +------------+------+------+
/// ```
///
#[derive(Debug, Clone)]
pub struct GroupBy<'df> {
    pub df: &'df DataFrame,
    pub(crate) selected_keys: Vec<Column>,
    // [first idx, [other idx]]
    groups: GroupsProxy,
    // columns selected for aggregation
    pub(crate) selected_agg: Option<Vec<PlSmallStr>>,
}

impl<'df> GroupBy<'df> {
    pub fn new(
        df: &'df DataFrame,
        by: Vec<Column>,
        groups: GroupsProxy,
        selected_agg: Option<Vec<PlSmallStr>>,
    ) -> Self {
        GroupBy {
            df,
            selected_keys: by,
            groups,
            selected_agg,
        }
    }

    /// Select the column(s) that should be aggregated.
    /// You can select a single column or a slice of columns.
    ///
    /// Note that making a selection with this method is not required. If you
    /// skip it all columns (except for the keys) will be selected for aggregation.
    #[must_use]
    pub fn select<I: IntoIterator<Item = S>, S: Into<PlSmallStr>>(mut self, selection: I) -> Self {
        self.selected_agg = Some(selection.into_iter().map(|s| s.into()).collect());
        self
    }

    /// Get the internal representation of the GroupBy operation.
    /// The Vec returned contains:
    ///     (first_idx, [`Vec<indexes>`])
    ///     Where second value in the tuple is a vector with all matching indexes.
    pub fn get_groups(&self) -> &GroupsProxy {
        &self.groups
    }

    /// Get the internal representation of the GroupBy operation.
    /// The Vec returned contains:
    ///     (first_idx, [`Vec<indexes>`])
    ///     Where second value in the tuple is a vector with all matching indexes.
    ///
    /// # Safety
    /// Groups should always be in bounds of the `DataFrame` hold by this `[GroupBy]`.
    /// If you mutate it, you must hold that invariant.
    pub unsafe fn get_groups_mut(&mut self) -> &mut GroupsProxy {
        &mut self.groups
    }

    pub fn take_groups(self) -> GroupsProxy {
        self.groups
    }

    pub fn take_groups_mut(&mut self) -> GroupsProxy {
        std::mem::take(&mut self.groups)
    }

    pub fn keys_sliced(&self, slice: Option<(i64, usize)>) -> Vec<Column> {
        #[allow(unused_assignments)]
        // needed to keep the lifetimes valid for this scope
        let mut groups_owned = None;

        let groups = if let Some((offset, len)) = slice {
            groups_owned = Some(self.groups.slice(offset, len));
            groups_owned.as_deref().unwrap()
        } else {
            &self.groups
        };

        POOL.install(|| {
            self.selected_keys
                .par_iter()
                .map(Column::as_materialized_series)
                .map(|s| {
                    match groups {
                        GroupsProxy::Idx(groups) => {
                            // SAFETY: groups are always in bounds.
                            let mut out = unsafe { s.take_slice_unchecked(groups.first()) };
                            if groups.sorted {
                                out.set_sorted_flag(s.is_sorted_flag());
                            };
                            out
                        },
                        GroupsProxy::Slice { groups, rolling } => {
                            if *rolling && !groups.is_empty() {
                                // Groups can be sliced.
                                let offset = groups[0][0];
                                let [upper_offset, upper_len] = groups[groups.len() - 1];
                                return s.slice(
                                    offset as i64,
                                    ((upper_offset + upper_len) - offset) as usize,
                                );
                            }

                            let indices = groups
                                .iter()
                                .map(|&[first, _len]| first)
                                .collect_ca(PlSmallStr::EMPTY);
                            // SAFETY: groups are always in bounds.
                            let mut out = unsafe { s.take_unchecked(&indices) };
                            // Sliced groups are always in order of discovery.
                            out.set_sorted_flag(s.is_sorted_flag());
                            out
                        },
                    }
                })
                .map(Column::from)
                .collect()
        })
    }

    pub fn keys(&self) -> Vec<Column> {
        self.keys_sliced(None)
    }

    fn prepare_agg(&self) -> PolarsResult<(Vec<Column>, Vec<Column>)> {
        let keys = self.keys();

        let agg_col = match &self.selected_agg {
            Some(selection) => self.df.select_columns_impl(selection.as_slice()),
            None => {
                let by: Vec<_> = self.selected_keys.iter().map(|s| s.name()).collect();
                let selection = self
                    .df
                    .iter()
                    .map(|s| s.name())
                    .filter(|a| !by.contains(a))
                    .cloned()
                    .collect::<Vec<_>>();

                self.df.select_columns_impl(selection.as_slice())
            },
        }?;

        Ok((keys, agg_col))
    }

    /// Aggregate grouped series and compute the mean per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp", "rain"]).mean()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+-----------+-----------+
    /// | date       | temp_mean | rain_mean |
    /// | ---        | ---       | ---       |
    /// | Date       | f64       | f64       |
    /// +============+===========+===========+
    /// | 2020-08-23 | 9         | 0.1       |
    /// +------------+-----------+-----------+
    /// | 2020-08-22 | 4         | 0.155     |
    /// +------------+-----------+-----------+
    /// | 2020-08-21 | 15        | 0.15      |
    /// +------------+-----------+-----------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn mean(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;

        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::Mean);
            let mut agg = unsafe { agg_col.agg_mean(&self.groups) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped series and compute the sum per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp"]).sum()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+----------+
    /// | date       | temp_sum |
    /// | ---        | ---      |
    /// | Date       | i32      |
    /// +============+==========+
    /// | 2020-08-23 | 9        |
    /// +------------+----------+
    /// | 2020-08-22 | 8        |
    /// +------------+----------+
    /// | 2020-08-21 | 30       |
    /// +------------+----------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn sum(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;

        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::Sum);
            let mut agg = unsafe { agg_col.agg_sum(&self.groups) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped series and compute the minimal value per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp"]).min()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+----------+
    /// | date       | temp_min |
    /// | ---        | ---      |
    /// | Date       | i32      |
    /// +============+==========+
    /// | 2020-08-23 | 9        |
    /// +------------+----------+
    /// | 2020-08-22 | 1        |
    /// +------------+----------+
    /// | 2020-08-21 | 10       |
    /// +------------+----------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn min(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::Min);
            let mut agg = unsafe { agg_col.agg_min(&self.groups) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped series and compute the maximum value per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp"]).max()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+----------+
    /// | date       | temp_max |
    /// | ---        | ---      |
    /// | Date       | i32      |
    /// +============+==========+
    /// | 2020-08-23 | 9        |
    /// +------------+----------+
    /// | 2020-08-22 | 7        |
    /// +------------+----------+
    /// | 2020-08-21 | 20       |
    /// +------------+----------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn max(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::Max);
            let mut agg = unsafe { agg_col.agg_max(&self.groups) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` and find the first value per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp"]).first()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+------------+
    /// | date       | temp_first |
    /// | ---        | ---        |
    /// | Date       | i32        |
    /// +============+============+
    /// | 2020-08-23 | 9          |
    /// +------------+------------+
    /// | 2020-08-22 | 7          |
    /// +------------+------------+
    /// | 2020-08-21 | 20         |
    /// +------------+------------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn first(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::First);
            let mut agg = unsafe { agg_col.agg_first(&self.groups) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` and return the last value per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp"]).last()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+------------+
    /// | date       | temp_last |
    /// | ---        | ---        |
    /// | Date       | i32        |
    /// +============+============+
    /// | 2020-08-23 | 9          |
    /// +------------+------------+
    /// | 2020-08-22 | 1          |
    /// +------------+------------+
    /// | 2020-08-21 | 10         |
    /// +------------+------------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn last(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::Last);
            let mut agg = unsafe { agg_col.agg_last(&self.groups) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` by counting the number of unique values.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp"]).n_unique()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+---------------+
    /// | date       | temp_n_unique |
    /// | ---        | ---           |
    /// | Date       | u32           |
    /// +============+===============+
    /// | 2020-08-23 | 1             |
    /// +------------+---------------+
    /// | 2020-08-22 | 2             |
    /// +------------+---------------+
    /// | 2020-08-21 | 2             |
    /// +------------+---------------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn n_unique(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::NUnique);
            let mut agg = unsafe { agg_col.agg_n_unique(&self.groups) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped [`Series`] and determine the quantile per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// # use arrow::legacy::prelude::QuantileMethod;
    ///
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp"]).quantile(0.2, QuantileMethod::default())
    /// }
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn quantile(&self, quantile: f64, method: QuantileMethod) -> PolarsResult<DataFrame> {
        polars_ensure!(
            (0.0..=1.0).contains(&quantile),
            ComputeError: "`quantile` should be within 0.0 and 1.0"
        );
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(
                agg_col.name().as_str(),
                GroupByMethod::Quantile(quantile, method),
            );
            let mut agg = unsafe { agg_col.agg_quantile(&self.groups, quantile, method) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped [`Series`] and determine the median per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp"]).median()
    /// }
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn median(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::Median);
            let mut agg = unsafe { agg_col.agg_median(&self.groups) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped [`Series`] and determine the variance per group.
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn var(&self, ddof: u8) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::Var(ddof));
            let mut agg = unsafe { agg_col.agg_var(&self.groups, ddof) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped [`Series`] and determine the standard deviation per group.
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn std(&self, ddof: u8) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::Std(ddof));
            let mut agg = unsafe { agg_col.agg_std(&self.groups, ddof) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped series and compute the number of values per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.select(["temp"]).count()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+------------+
    /// | date       | temp_count |
    /// | ---        | ---        |
    /// | Date       | u32        |
    /// +============+============+
    /// | 2020-08-23 | 1          |
    /// +------------+------------+
    /// | 2020-08-22 | 2          |
    /// +------------+------------+
    /// | 2020-08-21 | 2          |
    /// +------------+------------+
    /// ```
    pub fn count(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;

        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(
                agg_col.name().as_str(),
                GroupByMethod::Count {
                    include_nulls: true,
                },
            );
            let mut ca = self.groups.group_count();
            ca.rename(new_name);
            cols.push(ca.into_column());
        }
        DataFrame::new(cols)
    }

    /// Get the group_by group indexes.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.group_by(["date"])?.groups()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +--------------+------------+
    /// | date         | groups     |
    /// | ---          | ---        |
    /// | Date(days)   | list [u32] |
    /// +==============+============+
    /// | 2020-08-23   | "[3]"      |
    /// +--------------+------------+
    /// | 2020-08-22   | "[2, 4]"   |
    /// +--------------+------------+
    /// | 2020-08-21   | "[0, 1]"   |
    /// +--------------+------------+
    /// ```
    pub fn groups(&self) -> PolarsResult<DataFrame> {
        let mut cols = self.keys();
        let mut column = self.groups.as_list_chunked();
        let new_name = fmt_group_by_column("", GroupByMethod::Groups);
        column.rename(new_name);
        cols.push(column.into_column());
        DataFrame::new(cols)
    }

    /// Aggregate the groups of the group_by operation into lists.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     // GroupBy and aggregate to Lists
    ///     df.group_by(["date"])?.select(["temp"]).agg_list()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+------------------------+
    /// | date       | temp_agg_list          |
    /// | ---        | ---                    |
    /// | Date       | list [i32]             |
    /// +============+========================+
    /// | 2020-08-23 | "[Some(9)]"            |
    /// +------------+------------------------+
    /// | 2020-08-22 | "[Some(7), Some(1)]"   |
    /// +------------+------------------------+
    /// | 2020-08-21 | "[Some(20), Some(10)]" |
    /// +------------+------------------------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn agg_list(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_group_by_column(agg_col.name().as_str(), GroupByMethod::Implode);
            let mut agg = unsafe { agg_col.agg_list(&self.groups) };
            agg.rename(new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    fn prepare_apply(&self) -> PolarsResult<DataFrame> {
        polars_ensure!(self.df.height() > 0, ComputeError: "cannot group_by + apply on empty 'DataFrame'");
        if let Some(agg) = &self.selected_agg {
            if agg.is_empty() {
                Ok(self.df.clone())
            } else {
                let mut new_cols = Vec::with_capacity(self.selected_keys.len() + agg.len());
                new_cols.extend_from_slice(&self.selected_keys);
                let cols = self.df.select_columns_impl(agg.as_slice())?;
                new_cols.extend(cols);
                Ok(unsafe { DataFrame::new_no_checks(self.df.height(), new_cols) })
            }
        } else {
            Ok(self.df.clone())
        }
    }

    /// Apply a closure over the groups as a new [`DataFrame`] in parallel.
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn par_apply<F>(&self, f: F) -> PolarsResult<DataFrame>
    where
        F: Fn(DataFrame) -> PolarsResult<DataFrame> + Send + Sync,
    {
        let df = self.prepare_apply()?;
        let dfs = self
            .get_groups()
            .par_iter()
            .map(|g| {
                // SAFETY:
                // groups are in bounds
                let sub_df = unsafe { take_df(&df, g) };
                f(sub_df)
            })
            .collect::<PolarsResult<Vec<_>>>()?;

        let mut df = accumulate_dataframes_vertical(dfs)?;
        df.as_single_chunk_par();
        Ok(df)
    }

    /// Apply a closure over the groups as a new [`DataFrame`].
    pub fn apply<F>(&self, mut f: F) -> PolarsResult<DataFrame>
    where
        F: FnMut(DataFrame) -> PolarsResult<DataFrame> + Send + Sync,
    {
        let df = self.prepare_apply()?;
        let dfs = self
            .get_groups()
            .iter()
            .map(|g| {
                // SAFETY:
                // groups are in bounds
                let sub_df = unsafe { take_df(&df, g) };
                f(sub_df)
            })
            .collect::<PolarsResult<Vec<_>>>()?;

        let mut df = accumulate_dataframes_vertical(dfs)?;
        df.as_single_chunk_par();
        Ok(df)
    }
}

unsafe fn take_df(df: &DataFrame, g: GroupsIndicator) -> DataFrame {
    match g {
        GroupsIndicator::Idx(idx) => df.take_slice_unchecked(idx.1),
        GroupsIndicator::Slice([first, len]) => df.slice(first as i64, len as usize),
    }
}

#[derive(Copy, Clone, Debug)]
pub enum GroupByMethod {
    Min,
    NanMin,
    Max,
    NanMax,
    Median,
    Mean,
    First,
    Last,
    Sum,
    Groups,
    NUnique,
    Quantile(f64, QuantileMethod),
    Count {
        include_nulls: bool,
    },
    Implode,
    Std(u8),
    Var(u8),
    #[cfg(feature = "bitwise")]
    Bitwise(GroupByBitwiseMethod),
}

#[cfg(feature = "bitwise")]
#[derive(Copy, Clone, Debug)]
pub enum GroupByBitwiseMethod {
    And,
    Or,
    Xor,
}

impl Display for GroupByMethod {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        use GroupByMethod::*;
        let s = match self {
            Min => "min",
            NanMin => "nan_min",
            Max => "max",
            NanMax => "nan_max",
            Median => "median",
            Mean => "mean",
            First => "first",
            Last => "last",
            Sum => "sum",
            Groups => "groups",
            NUnique => "n_unique",
            Quantile(_, _) => "quantile",
            Count { .. } => "count",
            Implode => "list",
            Std(_) => "std",
            Var(_) => "var",
            #[cfg(feature = "bitwise")]
            Bitwise(t) => {
                f.write_str("bitwise_")?;
                return Display::fmt(t, f);
            },
        };
        write!(f, "{s}")
    }
}

#[cfg(feature = "bitwise")]
impl Display for GroupByBitwiseMethod {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::And => f.write_str("and"),
            Self::Or => f.write_str("or"),
            Self::Xor => f.write_str("xor"),
        }
    }
}

// Formatting functions used in eager and lazy code for renaming grouped columns
pub fn fmt_group_by_column(name: &str, method: GroupByMethod) -> PlSmallStr {
    use GroupByMethod::*;
    match method {
        Min => format_pl_smallstr!("{name}_min"),
        Max => format_pl_smallstr!("{name}_max"),
        NanMin => format_pl_smallstr!("{name}_nan_min"),
        NanMax => format_pl_smallstr!("{name}_nan_max"),
        Median => format_pl_smallstr!("{name}_median"),
        Mean => format_pl_smallstr!("{name}_mean"),
        First => format_pl_smallstr!("{name}_first"),
        Last => format_pl_smallstr!("{name}_last"),
        Sum => format_pl_smallstr!("{name}_sum"),
        Groups => PlSmallStr::from_static("groups"),
        NUnique => format_pl_smallstr!("{name}_n_unique"),
        Count { .. } => format_pl_smallstr!("{name}_count"),
        Implode => format_pl_smallstr!("{name}_agg_list"),
        Quantile(quantile, _interpol) => format_pl_smallstr!("{name}_quantile_{quantile:.2}"),
        Std(_) => format_pl_smallstr!("{name}_agg_std"),
        Var(_) => format_pl_smallstr!("{name}_agg_var"),
        #[cfg(feature = "bitwise")]
        Bitwise(f) => format_pl_smallstr!("{name}_agg_bitwise_{f}"),
    }
}

#[cfg(test)]
mod test {
    use num_traits::FloatConst;

    use crate::prelude::*;

    #[test]
    #[cfg(feature = "dtype-date")]
    #[cfg_attr(miri, ignore)]
    fn test_group_by() -> PolarsResult<()> {
        let s0 = Column::new(
            PlSmallStr::from_static("date"),
            &[
                "2020-08-21",
                "2020-08-21",
                "2020-08-22",
                "2020-08-23",
                "2020-08-22",
            ],
        );
        let s1 = Column::new(PlSmallStr::from_static("temp"), [20, 10, 7, 9, 1]);
        let s2 = Column::new(PlSmallStr::from_static("rain"), [0.2, 0.1, 0.3, 0.1, 0.01]);
        let df = DataFrame::new(vec![s0, s1, s2]).unwrap();

        let out = df.group_by_stable(["date"])?.select(["temp"]).count()?;
        assert_eq!(
            out.column("temp_count")?,
            &Column::new(PlSmallStr::from_static("temp_count"), [2 as IdxSize, 2, 1])
        );

        // Use of deprecated mean() for testing purposes
        #[allow(deprecated)]
        // Select multiple
        let out = df
            .group_by_stable(["date"])?
            .select(["temp", "rain"])
            .mean()?;
        assert_eq!(
            out.column("temp_mean")?,
            &Column::new(PlSmallStr::from_static("temp_mean"), [15.0f64, 4.0, 9.0])
        );

        // Use of deprecated `mean()` for testing purposes
        #[allow(deprecated)]
        // Group by multiple
        let out = df
            .group_by_stable(["date", "temp"])?
            .select(["rain"])
            .mean()?;
        assert!(out.column("rain_mean").is_ok());

        // Use of deprecated `sum()` for testing purposes
        #[allow(deprecated)]
        let out = df.group_by_stable(["date"])?.select(["temp"]).sum()?;
        assert_eq!(
            out.column("temp_sum")?,
            &Column::new(PlSmallStr::from_static("temp_sum"), [30, 8, 9])
        );

        // Use of deprecated `n_unique()` for testing purposes
        #[allow(deprecated)]
        // implicit select all and only aggregate on methods that support that aggregation
        let gb = df.group_by(["date"]).unwrap().n_unique().unwrap();
        // check the group by column is filtered out.
        assert_eq!(gb.width(), 3);
        Ok(())
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_static_group_by_by_12_columns() {
        // Build GroupBy DataFrame.
        let s0 = Column::new("G1".into(), ["A", "A", "B", "B", "C"].as_ref());
        let s1 = Column::new("N".into(), [1, 2, 2, 4, 2].as_ref());
        let s2 = Column::new("G2".into(), ["k", "l", "m", "m", "l"].as_ref());
        let s3 = Column::new("G3".into(), ["a", "b", "c", "c", "d"].as_ref());
        let s4 = Column::new("G4".into(), ["1", "2", "3", "3", "4"].as_ref());
        let s5 = Column::new("G5".into(), ["X", "Y", "Z", "Z", "W"].as_ref());
        let s6 = Column::new("G6".into(), [false, true, true, true, false].as_ref());
        let s7 = Column::new("G7".into(), ["r", "x", "q", "q", "o"].as_ref());
        let s8 = Column::new("G8".into(), ["R", "X", "Q", "Q", "O"].as_ref());
        let s9 = Column::new("G9".into(), [1, 2, 3, 3, 4].as_ref());
        let s10 = Column::new("G10".into(), [".", "!", "?", "?", "/"].as_ref());
        let s11 = Column::new("G11".into(), ["(", ")", "@", "@", "$"].as_ref());
        let s12 = Column::new("G12".into(), ["-", "_", ";", ";", ","].as_ref());

        let df =
            DataFrame::new(vec![s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12]).unwrap();

        // Use of deprecated `sum()` for testing purposes
        #[allow(deprecated)]
        let adf = df
            .group_by([
                "G1", "G2", "G3", "G4", "G5", "G6", "G7", "G8", "G9", "G10", "G11", "G12",
            ])
            .unwrap()
            .select(["N"])
            .sum()
            .unwrap();

        assert_eq!(
            Vec::from(&adf.column("N_sum").unwrap().i32().unwrap().sort(false)),
            &[Some(1), Some(2), Some(2), Some(6)]
        );
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_dynamic_group_by_by_13_columns() {
        // The content for every group_by series.
        let series_content = ["A", "A", "B", "B", "C"];

        // The name of every group_by series.
        let series_names = [
            "G1", "G2", "G3", "G4", "G5", "G6", "G7", "G8", "G9", "G10", "G11", "G12", "G13",
        ];

        // Vector to contain every series.
        let mut columns = Vec::with_capacity(14);

        // Create a series for every group name.
        for series_name in series_names {
            let group_columns = Column::new(series_name.into(), series_content.as_ref());
            columns.push(group_columns);
        }

        // Create a series for the aggregation column.
        let agg_series = Column::new("N".into(), [1, 2, 3, 3, 4].as_ref());
        columns.push(agg_series);

        // Create the dataframe with the computed series.
        let df = DataFrame::new(columns).unwrap();

        // Use of deprecated `sum()` for testing purposes
        #[allow(deprecated)]
        // Compute the aggregated DataFrame by the 13 columns defined in `series_names`.
        let adf = df
            .group_by(series_names)
            .unwrap()
            .select(["N"])
            .sum()
            .unwrap();

        // Check that the results of the group-by are correct. The content of every column
        // is equal, then, the grouped columns shall be equal and in the same order.
        for series_name in &series_names {
            assert_eq!(
                Vec::from(&adf.column(series_name).unwrap().str().unwrap().sort(false)),
                &[Some("A"), Some("B"), Some("C")]
            );
        }

        // Check the aggregated column is the expected one.
        assert_eq!(
            Vec::from(&adf.column("N_sum").unwrap().i32().unwrap().sort(false)),
            &[Some(3), Some(4), Some(6)]
        );
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_group_by_floats() {
        let df = df! {"flt" => [1., 1., 2., 2., 3.],
                    "val" => [1, 1, 1, 1, 1]
        }
        .unwrap();
        // Use of deprecated `sum()` for testing purposes
        #[allow(deprecated)]
        let res = df.group_by(["flt"]).unwrap().sum().unwrap();
        let res = res.sort(["flt"], SortMultipleOptions::default()).unwrap();
        assert_eq!(
            Vec::from(res.column("val_sum").unwrap().i32().unwrap()),
            &[Some(2), Some(2), Some(1)]
        );
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    #[cfg(feature = "dtype-categorical")]
    fn test_group_by_categorical() {
        let mut df = df! {"foo" => ["a", "a", "b", "b", "c"],
                    "ham" => ["a", "a", "b", "b", "c"],
                    "bar" => [1, 1, 1, 1, 1]
        }
        .unwrap();

        df.apply("foo", |s| {
            s.cast(&DataType::Categorical(None, Default::default()))
                .unwrap()
        })
        .unwrap();

        // Use of deprecated `sum()` for testing purposes
        #[allow(deprecated)]
        // check multiple keys and categorical
        let res = df
            .group_by_stable(["foo", "ham"])
            .unwrap()
            .select(["bar"])
            .sum()
            .unwrap();

        assert_eq!(
            Vec::from(
                res.column("bar_sum")
                    .unwrap()
                    .as_materialized_series()
                    .i32()
                    .unwrap()
            ),
            &[Some(2), Some(2), Some(1)]
        );
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_group_by_null_handling() -> PolarsResult<()> {
        let df = df!(
            "a" => ["a", "a", "a", "b", "b"],
            "b" => [Some(1), Some(2), None, None, Some(1)]
        )?;
        // Use of deprecated `mean()` for testing purposes
        #[allow(deprecated)]
        let out = df.group_by_stable(["a"])?.mean()?;

        assert_eq!(
            Vec::from(out.column("b_mean")?.as_materialized_series().f64()?),
            &[Some(1.5), Some(1.0)]
        );
        Ok(())
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_group_by_var() -> PolarsResult<()> {
        // check variance and proper coercion to f64
        let df = df![
            "g" => ["foo", "foo", "bar"],
            "flt" => [1.0, 2.0, 3.0],
            "int" => [1, 2, 3]
        ]?;

        // Use of deprecated `sum()` for testing purposes
        #[allow(deprecated)]
        let out = df.group_by_stable(["g"])?.select(["int"]).var(1)?;

        assert_eq!(out.column("int_agg_var")?.f64()?.get(0), Some(0.5));
        // Use of deprecated `std()` for testing purposes
        #[allow(deprecated)]
        let out = df.group_by_stable(["g"])?.select(["int"]).std(1)?;
        let val = out.column("int_agg_std")?.f64()?.get(0).unwrap();
        let expected = f64::FRAC_1_SQRT_2();
        assert!((val - expected).abs() < 0.000001);
        Ok(())
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    #[cfg(feature = "dtype-categorical")]
    fn test_group_by_null_group() -> PolarsResult<()> {
        // check if null is own group
        let mut df = df![
            "g" => [Some("foo"), Some("foo"), Some("bar"), None, None],
            "flt" => [1.0, 2.0, 3.0, 1.0, 1.0],
            "int" => [1, 2, 3, 1, 1]
        ]?;

        df.try_apply("g", |s| {
            s.cast(&DataType::Categorical(None, Default::default()))
        })?;

        // Use of deprecated `sum()` for testing purposes
        #[allow(deprecated)]
        let _ = df.group_by(["g"])?.sum()?;
        Ok(())
    }
}