polars_core/chunked_array/ops/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
//! Traits for miscellaneous operations on ChunkedArray
use arrow::offset::OffsetsBuffer;
use crate::prelude::*;
pub(crate) mod aggregate;
pub(crate) mod any_value;
pub(crate) mod append;
mod apply;
#[cfg(feature = "approx_unique")]
mod approx_n_unique;
pub mod arity;
mod bit_repr;
mod bits;
#[cfg(feature = "bitwise")]
mod bitwise_reduce;
pub(crate) mod chunkops;
pub(crate) mod compare_inner;
#[cfg(feature = "dtype-decimal")]
mod decimal;
pub(crate) mod downcast;
pub(crate) mod explode;
mod explode_and_offsets;
mod extend;
pub mod fill_null;
mod filter;
pub mod float_sorted_arg_max;
mod for_each;
pub mod full;
pub mod gather;
pub(crate) mod nulls;
mod reverse;
#[cfg(feature = "rolling_window")]
pub(crate) mod rolling_window;
pub mod row_encode;
pub mod search_sorted;
mod set;
mod shift;
pub mod sort;
#[cfg(feature = "algorithm_group_by")]
pub(crate) mod unique;
#[cfg(feature = "zip_with")]
pub mod zip;
pub use chunkops::_set_check_length;
#[cfg(feature = "serde-lazy")]
use serde::{Deserialize, Serialize};
pub use sort::options::*;
use crate::chunked_array::cast::CastOptions;
use crate::series::{BitRepr, IsSorted};
#[cfg(feature = "reinterpret")]
pub trait Reinterpret {
fn reinterpret_signed(&self) -> Series {
unimplemented!()
}
fn reinterpret_unsigned(&self) -> Series {
unimplemented!()
}
}
/// Transmute [`ChunkedArray`] to bit representation.
/// This is useful in hashing context and reduces no.
/// of compiled code paths.
pub(crate) trait ToBitRepr {
fn to_bit_repr(&self) -> BitRepr;
}
pub trait ChunkAnyValue {
/// Get a single value. Beware this is slow.
/// If you need to use this slightly performant, cast Categorical to UInt32
///
/// # Safety
/// Does not do any bounds checking.
unsafe fn get_any_value_unchecked(&self, index: usize) -> AnyValue;
/// Get a single value. Beware this is slow.
fn get_any_value(&self, index: usize) -> PolarsResult<AnyValue>;
}
/// Explode/flatten a List or String Series
pub trait ChunkExplode {
fn explode(&self) -> PolarsResult<Series> {
self.explode_and_offsets().map(|t| t.0)
}
fn offsets(&self) -> PolarsResult<OffsetsBuffer<i64>>;
fn explode_and_offsets(&self) -> PolarsResult<(Series, OffsetsBuffer<i64>)>;
}
pub trait ChunkBytes {
fn to_byte_slices(&self) -> Vec<&[u8]>;
}
/// This differs from ChunkWindowCustom and ChunkWindow
/// by not using a fold aggregator, but reusing a `Series` wrapper and calling `Series` aggregators.
/// This likely is a bit slower than ChunkWindow
#[cfg(feature = "rolling_window")]
pub trait ChunkRollApply: AsRefDataType {
fn rolling_map(
&self,
_f: &dyn Fn(&Series) -> Series,
_options: RollingOptionsFixedWindow,
) -> PolarsResult<Series>
where
Self: Sized,
{
polars_bail!(opq = rolling_map, self.as_ref_dtype());
}
}
pub trait ChunkTake<Idx: ?Sized>: ChunkTakeUnchecked<Idx> {
/// Gather values from ChunkedArray by index.
fn take(&self, indices: &Idx) -> PolarsResult<Self>
where
Self: Sized;
}
pub trait ChunkTakeUnchecked<Idx: ?Sized> {
/// Gather values from ChunkedArray by index.
///
/// # Safety
/// The non-null indices must be valid.
unsafe fn take_unchecked(&self, indices: &Idx) -> Self;
}
/// Create a `ChunkedArray` with new values by index or by boolean mask.
///
/// Note that these operations clone data. This is however the only way we can modify at mask or
/// index level as the underlying Arrow arrays are immutable.
pub trait ChunkSet<'a, A, B> {
/// Set the values at indexes `idx` to some optional value `Option<T>`.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let ca = UInt32Chunked::new("a".into(), &[1, 2, 3]);
/// let new = ca.scatter_single(vec![0, 1], Some(10)).unwrap();
///
/// assert_eq!(Vec::from(&new), &[Some(10), Some(10), Some(3)]);
/// ```
fn scatter_single<I: IntoIterator<Item = IdxSize>>(
&'a self,
idx: I,
opt_value: Option<A>,
) -> PolarsResult<Self>
where
Self: Sized;
/// Set the values at indexes `idx` by applying a closure to these values.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let ca = Int32Chunked::new("a".into(), &[1, 2, 3]);
/// let new = ca.scatter_with(vec![0, 1], |opt_v| opt_v.map(|v| v - 5)).unwrap();
///
/// assert_eq!(Vec::from(&new), &[Some(-4), Some(-3), Some(3)]);
/// ```
fn scatter_with<I: IntoIterator<Item = IdxSize>, F>(
&'a self,
idx: I,
f: F,
) -> PolarsResult<Self>
where
Self: Sized,
F: Fn(Option<A>) -> Option<B>;
/// Set the values where the mask evaluates to `true` to some optional value `Option<T>`.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let ca = Int32Chunked::new("a".into(), &[1, 2, 3]);
/// let mask = BooleanChunked::new("mask".into(), &[false, true, false]);
/// let new = ca.set(&mask, Some(5)).unwrap();
/// assert_eq!(Vec::from(&new), &[Some(1), Some(5), Some(3)]);
/// ```
fn set(&'a self, mask: &BooleanChunked, opt_value: Option<A>) -> PolarsResult<Self>
where
Self: Sized;
}
/// Cast `ChunkedArray<T>` to `ChunkedArray<N>`
pub trait ChunkCast {
/// Cast a [`ChunkedArray`] to [`DataType`]
fn cast(&self, dtype: &DataType) -> PolarsResult<Series> {
self.cast_with_options(dtype, CastOptions::NonStrict)
}
/// Cast a [`ChunkedArray`] to [`DataType`]
fn cast_with_options(&self, dtype: &DataType, options: CastOptions) -> PolarsResult<Series>;
/// Does not check if the cast is a valid one and may over/underflow
///
/// # Safety
/// - This doesn't do utf8 validation checking when casting from binary
/// - This doesn't do categorical bound checking when casting from UInt32
unsafe fn cast_unchecked(&self, dtype: &DataType) -> PolarsResult<Series>;
}
/// Fastest way to do elementwise operations on a [`ChunkedArray<T>`] when the operation is cheaper than
/// branching due to null checking.
pub trait ChunkApply<'a, T> {
type FuncRet;
/// Apply a closure elementwise. This is fastest when the null check branching is more expensive
/// than the closure application. Often it is.
///
/// Null values remain null.
///
/// # Example
///
/// ```
/// use polars_core::prelude::*;
/// fn double(ca: &UInt32Chunked) -> UInt32Chunked {
/// ca.apply_values(|v| v * 2)
/// }
/// ```
#[must_use]
fn apply_values<F>(&'a self, f: F) -> Self
where
F: Fn(T) -> Self::FuncRet + Copy;
/// Apply a closure elementwise including null values.
#[must_use]
fn apply<F>(&'a self, f: F) -> Self
where
F: Fn(Option<T>) -> Option<Self::FuncRet> + Copy;
/// Apply a closure elementwise and write results to a mutable slice.
fn apply_to_slice<F, S>(&'a self, f: F, slice: &mut [S])
// (value of chunkedarray, value of slice) -> value of slice
where
F: Fn(Option<T>, &S) -> S;
}
/// Aggregation operations.
pub trait ChunkAgg<T> {
/// Aggregate the sum of the ChunkedArray.
/// Returns `None` if not implemented for `T`.
/// If the array is empty, `0` is returned
fn sum(&self) -> Option<T> {
None
}
fn _sum_as_f64(&self) -> f64;
fn min(&self) -> Option<T> {
None
}
/// Returns the maximum value in the array, according to the natural order.
/// Returns `None` if the array is empty or only contains null values.
fn max(&self) -> Option<T> {
None
}
fn min_max(&self) -> Option<(T, T)> {
Some((self.min()?, self.max()?))
}
/// Returns the mean value in the array.
/// Returns `None` if the array is empty or only contains null values.
fn mean(&self) -> Option<f64> {
None
}
}
/// Quantile and median aggregation.
pub trait ChunkQuantile<T> {
/// Returns the mean value in the array.
/// Returns `None` if the array is empty or only contains null values.
fn median(&self) -> Option<T> {
None
}
/// Aggregate a given quantile of the ChunkedArray.
/// Returns `None` if the array is empty or only contains null values.
fn quantile(&self, _quantile: f64, _method: QuantileMethod) -> PolarsResult<Option<T>> {
Ok(None)
}
}
/// Variance and standard deviation aggregation.
pub trait ChunkVar {
/// Compute the variance of this ChunkedArray/Series.
fn var(&self, _ddof: u8) -> Option<f64> {
None
}
/// Compute the standard deviation of this ChunkedArray/Series.
fn std(&self, _ddof: u8) -> Option<f64> {
None
}
}
/// Bitwise Reduction Operations.
#[cfg(feature = "bitwise")]
pub trait ChunkBitwiseReduce {
type Physical;
fn and_reduce(&self) -> Option<Self::Physical>;
fn or_reduce(&self) -> Option<Self::Physical>;
fn xor_reduce(&self) -> Option<Self::Physical>;
}
/// Compare [`Series`] and [`ChunkedArray`]'s and get a `boolean` mask that
/// can be used to filter rows.
///
/// # Example
///
/// ```
/// use polars_core::prelude::*;
/// fn filter_all_ones(df: &DataFrame) -> PolarsResult<DataFrame> {
/// let mask = df
/// .column("column_a")?
/// .as_materialized_series()
/// .equal(1)?;
///
/// df.filter(&mask)
/// }
/// ```
pub trait ChunkCompareEq<Rhs> {
type Item;
/// Check for equality.
fn equal(&self, rhs: Rhs) -> Self::Item;
/// Check for equality where `None == None`.
fn equal_missing(&self, rhs: Rhs) -> Self::Item;
/// Check for inequality.
fn not_equal(&self, rhs: Rhs) -> Self::Item;
/// Check for inequality where `None == None`.
fn not_equal_missing(&self, rhs: Rhs) -> Self::Item;
}
/// Compare [`Series`] and [`ChunkedArray`]'s using inequality operators (`<`, `>=`, etc.) and get
/// a `boolean` mask that can be used to filter rows.
pub trait ChunkCompareIneq<Rhs> {
type Item;
/// Greater than comparison.
fn gt(&self, rhs: Rhs) -> Self::Item;
/// Greater than or equal comparison.
fn gt_eq(&self, rhs: Rhs) -> Self::Item;
/// Less than comparison.
fn lt(&self, rhs: Rhs) -> Self::Item;
/// Less than or equal comparison
fn lt_eq(&self, rhs: Rhs) -> Self::Item;
}
/// Get unique values in a `ChunkedArray`
pub trait ChunkUnique {
// We don't return Self to be able to use AutoRef specialization
/// Get unique values of a ChunkedArray
fn unique(&self) -> PolarsResult<Self>
where
Self: Sized;
/// Get first index of the unique values in a `ChunkedArray`.
/// This Vec is sorted.
fn arg_unique(&self) -> PolarsResult<IdxCa>;
/// Number of unique values in the `ChunkedArray`
fn n_unique(&self) -> PolarsResult<usize> {
self.arg_unique().map(|v| v.len())
}
}
#[cfg(feature = "approx_unique")]
pub trait ChunkApproxNUnique {
fn approx_n_unique(&self) -> IdxSize;
}
/// Sort operations on `ChunkedArray`.
pub trait ChunkSort<T: PolarsDataType> {
#[allow(unused_variables)]
fn sort_with(&self, options: SortOptions) -> ChunkedArray<T>;
/// Returned a sorted `ChunkedArray`.
fn sort(&self, descending: bool) -> ChunkedArray<T>;
/// Retrieve the indexes needed to sort this array.
fn arg_sort(&self, options: SortOptions) -> IdxCa;
/// Retrieve the indexes need to sort this and the other arrays.
#[allow(unused_variables)]
fn arg_sort_multiple(
&self,
by: &[Column],
_options: &SortMultipleOptions,
) -> PolarsResult<IdxCa> {
polars_bail!(opq = arg_sort_multiple, T::get_dtype());
}
}
pub type FillNullLimit = Option<IdxSize>;
#[derive(Copy, Clone, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "serde-lazy", derive(Serialize, Deserialize))]
pub enum FillNullStrategy {
/// previous value in array
Backward(FillNullLimit),
/// next value in array
Forward(FillNullLimit),
/// mean value of array
Mean,
/// minimal value in array
Min,
/// maximum value in array
Max,
/// replace with the value zero
Zero,
/// replace with the value one
One,
/// replace with the maximum value of that data type
MaxBound,
/// replace with the minimal value of that data type
MinBound,
}
impl FillNullStrategy {
pub fn is_elementwise(&self) -> bool {
matches!(self, Self::One | Self::Zero)
}
}
/// Replace None values with a value
pub trait ChunkFillNullValue<T> {
/// Replace None values with a give value `T`.
fn fill_null_with_values(&self, value: T) -> PolarsResult<Self>
where
Self: Sized;
}
/// Fill a ChunkedArray with one value.
pub trait ChunkFull<T> {
/// Create a ChunkedArray with a single value.
fn full(name: PlSmallStr, value: T, length: usize) -> Self
where
Self: Sized;
}
pub trait ChunkFullNull {
fn full_null(_name: PlSmallStr, _length: usize) -> Self
where
Self: Sized;
}
/// Reverse a [`ChunkedArray<T>`]
pub trait ChunkReverse {
/// Return a reversed version of this array.
fn reverse(&self) -> Self;
}
/// Filter values by a boolean mask.
pub trait ChunkFilter<T: PolarsDataType> {
/// Filter values in the ChunkedArray with a boolean mask.
///
/// ```rust
/// # use polars_core::prelude::*;
/// let array = Int32Chunked::new("array".into(), &[1, 2, 3]);
/// let mask = BooleanChunked::new("mask".into(), &[true, false, true]);
///
/// let filtered = array.filter(&mask).unwrap();
/// assert_eq!(Vec::from(&filtered), [Some(1), Some(3)])
/// ```
fn filter(&self, filter: &BooleanChunked) -> PolarsResult<ChunkedArray<T>>
where
Self: Sized;
}
/// Create a new ChunkedArray filled with values at that index.
pub trait ChunkExpandAtIndex<T: PolarsDataType> {
/// Create a new ChunkedArray filled with values at that index.
fn new_from_index(&self, index: usize, length: usize) -> ChunkedArray<T>;
}
macro_rules! impl_chunk_expand {
($self:ident, $length:ident, $index:ident) => {{
if $self.is_empty() {
return $self.clone();
}
let opt_val = $self.get($index);
match opt_val {
Some(val) => ChunkedArray::full($self.name().clone(), val, $length),
None => ChunkedArray::full_null($self.name().clone(), $length),
}
}};
}
impl<T: PolarsNumericType> ChunkExpandAtIndex<T> for ChunkedArray<T>
where
ChunkedArray<T>: ChunkFull<T::Native>,
{
fn new_from_index(&self, index: usize, length: usize) -> ChunkedArray<T> {
let mut out = impl_chunk_expand!(self, length, index);
out.set_sorted_flag(IsSorted::Ascending);
out
}
}
impl ChunkExpandAtIndex<BooleanType> for BooleanChunked {
fn new_from_index(&self, index: usize, length: usize) -> BooleanChunked {
let mut out = impl_chunk_expand!(self, length, index);
out.set_sorted_flag(IsSorted::Ascending);
out
}
}
impl ChunkExpandAtIndex<StringType> for StringChunked {
fn new_from_index(&self, index: usize, length: usize) -> StringChunked {
let mut out = impl_chunk_expand!(self, length, index);
out.set_sorted_flag(IsSorted::Ascending);
out
}
}
impl ChunkExpandAtIndex<BinaryType> for BinaryChunked {
fn new_from_index(&self, index: usize, length: usize) -> BinaryChunked {
let mut out = impl_chunk_expand!(self, length, index);
out.set_sorted_flag(IsSorted::Ascending);
out
}
}
impl ChunkExpandAtIndex<BinaryOffsetType> for BinaryOffsetChunked {
fn new_from_index(&self, index: usize, length: usize) -> BinaryOffsetChunked {
let mut out = impl_chunk_expand!(self, length, index);
out.set_sorted_flag(IsSorted::Ascending);
out
}
}
impl ChunkExpandAtIndex<ListType> for ListChunked {
fn new_from_index(&self, index: usize, length: usize) -> ListChunked {
let opt_val = self.get_as_series(index);
match opt_val {
Some(val) => {
let mut ca = ListChunked::full(self.name().clone(), &val, length);
unsafe { ca.to_logical(self.inner_dtype().clone()) };
ca
},
None => {
ListChunked::full_null_with_dtype(self.name().clone(), length, self.inner_dtype())
},
}
}
}
#[cfg(feature = "dtype-struct")]
impl ChunkExpandAtIndex<StructType> for StructChunked {
fn new_from_index(&self, index: usize, length: usize) -> ChunkedArray<StructType> {
let (chunk_idx, idx) = self.index_to_chunked_index(index);
let chunk = self.downcast_chunks().get(chunk_idx).unwrap();
let chunk = if chunk.is_null(idx) {
new_null_array(chunk.dtype().clone(), length)
} else {
let values = chunk
.values()
.iter()
.map(|arr| {
let s = Series::try_from((PlSmallStr::EMPTY, arr.clone())).unwrap();
let s = s.new_from_index(idx, length);
s.chunks()[0].clone()
})
.collect::<Vec<_>>();
StructArray::new(chunk.dtype().clone(), length, values, None).boxed()
};
// SAFETY: chunks are from self.
unsafe { self.copy_with_chunks(vec![chunk]) }
}
}
#[cfg(feature = "dtype-array")]
impl ChunkExpandAtIndex<FixedSizeListType> for ArrayChunked {
fn new_from_index(&self, index: usize, length: usize) -> ArrayChunked {
let opt_val = self.get_as_series(index);
match opt_val {
Some(val) => {
let mut ca = ArrayChunked::full(self.name().clone(), &val, length);
unsafe { ca.to_logical(self.inner_dtype().clone()) };
ca
},
None => ArrayChunked::full_null_with_dtype(
self.name().clone(),
length,
self.inner_dtype(),
self.width(),
),
}
}
}
#[cfg(feature = "object")]
impl<T: PolarsObject> ChunkExpandAtIndex<ObjectType<T>> for ObjectChunked<T> {
fn new_from_index(&self, index: usize, length: usize) -> ObjectChunked<T> {
let opt_val = self.get(index);
match opt_val {
Some(val) => ObjectChunked::<T>::full(self.name().clone(), val.clone(), length),
None => ObjectChunked::<T>::full_null(self.name().clone(), length),
}
}
}
/// Shift the values of a [`ChunkedArray`] by a number of periods.
pub trait ChunkShiftFill<T: PolarsDataType, V> {
/// Shift the values by a given period and fill the parts that will be empty due to this operation
/// with `fill_value`.
fn shift_and_fill(&self, periods: i64, fill_value: V) -> ChunkedArray<T>;
}
pub trait ChunkShift<T: PolarsDataType> {
fn shift(&self, periods: i64) -> ChunkedArray<T>;
}
/// Combine two [`ChunkedArray`] based on some predicate.
pub trait ChunkZip<T: PolarsDataType> {
/// Create a new ChunkedArray with values from self where the mask evaluates `true` and values
/// from `other` where the mask evaluates `false`
fn zip_with(
&self,
mask: &BooleanChunked,
other: &ChunkedArray<T>,
) -> PolarsResult<ChunkedArray<T>>;
}
/// Apply kernels on the arrow array chunks in a ChunkedArray.
pub trait ChunkApplyKernel<A: Array> {
/// Apply kernel and return result as a new ChunkedArray.
#[must_use]
fn apply_kernel(&self, f: &dyn Fn(&A) -> ArrayRef) -> Self;
/// Apply a kernel that outputs an array of different type.
fn apply_kernel_cast<S>(&self, f: &dyn Fn(&A) -> ArrayRef) -> ChunkedArray<S>
where
S: PolarsDataType;
}
#[cfg(feature = "is_first_distinct")]
/// Mask the first unique values as `true`
pub trait IsFirstDistinct<T: PolarsDataType> {
fn is_first_distinct(&self) -> PolarsResult<BooleanChunked> {
polars_bail!(opq = is_first_distinct, T::get_dtype());
}
}
#[cfg(feature = "is_last_distinct")]
/// Mask the last unique values as `true`
pub trait IsLastDistinct<T: PolarsDataType> {
fn is_last_distinct(&self) -> PolarsResult<BooleanChunked> {
polars_bail!(opq = is_last_distinct, T::get_dtype());
}
}