pub use crate::prelude::ChunkCompareEq;
use crate::prelude::*;
use crate::{HEAD_DEFAULT_LENGTH, TAIL_DEFAULT_LENGTH};
pub mod amortized_iter;
mod any_value;
pub mod arithmetic;
mod comparison;
mod from;
pub mod implementations;
mod into;
pub(crate) mod iterator;
pub mod ops;
mod series_trait;
use std::borrow::Cow;
use std::hash::{Hash, Hasher};
use std::ops::Deref;
use arrow::compute::aggregate::estimated_bytes_size;
use arrow::offset::Offsets;
pub use from::*;
pub use iterator::{SeriesIter, SeriesPhysIter};
use num_traits::NumCast;
use polars_utils::itertools::Itertools;
pub use series_trait::{IsSorted, *};
use crate::chunked_array::cast::CastOptions;
use crate::chunked_array::metadata::{IMMetadata, Metadata, MetadataFlags};
#[cfg(feature = "zip_with")]
use crate::series::arithmetic::coerce_lhs_rhs;
use crate::utils::{handle_casting_failures, materialize_dyn_int, Wrap};
use crate::POOL;
#[derive(Clone)]
#[must_use]
pub struct Series(pub Arc<dyn SeriesTrait>);
impl PartialEq for Wrap<Series> {
fn eq(&self, other: &Self) -> bool {
self.0.equals_missing(other)
}
}
impl Eq for Wrap<Series> {}
impl Hash for Wrap<Series> {
fn hash<H: Hasher>(&self, state: &mut H) {
let rs = PlRandomState::with_seeds(0, 0, 0, 0);
let mut h = vec![];
if self.0.vec_hash(rs, &mut h).is_ok() {
let h = h.into_iter().fold(0, |a: u64, b| a.wrapping_add(b));
h.hash(state)
} else {
self.len().hash(state);
self.null_count().hash(state);
self.dtype().hash(state);
}
}
}
impl Series {
pub fn new_empty(name: PlSmallStr, dtype: &DataType) -> Series {
Series::full_null(name, 0, dtype)
}
pub fn clear(&self) -> Series {
if self.is_empty() {
self.clone()
} else {
match self.dtype() {
#[cfg(feature = "object")]
DataType::Object(_, _) => self
.take(&ChunkedArray::<IdxType>::new_vec(PlSmallStr::EMPTY, vec![]))
.unwrap(),
dt => Series::new_empty(self.name().clone(), dt),
}
}
}
#[doc(hidden)]
pub fn _get_inner_mut(&mut self) -> &mut dyn SeriesTrait {
if Arc::weak_count(&self.0) + Arc::strong_count(&self.0) != 1 {
self.0 = self.0.clone_inner();
}
Arc::get_mut(&mut self.0).expect("implementation error")
}
pub unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
#[allow(unused_mut)]
let mut ca = self._get_inner_mut();
ca.chunks_mut()
}
pub fn into_chunks(mut self) -> Vec<ArrayRef> {
let ca = self._get_inner_mut();
let chunks = std::mem::take(unsafe { ca.chunks_mut() });
ca.compute_len();
chunks
}
pub fn select_chunk(&self, i: usize) -> Self {
let mut new = self.clear();
let flags = self.get_flags();
let mut new_flags = MetadataFlags::empty();
new_flags.set(
MetadataFlags::SORTED_ASC,
flags.contains(MetadataFlags::SORTED_ASC),
);
new_flags.set(
MetadataFlags::SORTED_DSC,
flags.contains(MetadataFlags::SORTED_DSC),
);
new_flags.set(
MetadataFlags::FAST_EXPLODE_LIST,
flags.contains(MetadataFlags::FAST_EXPLODE_LIST),
);
let mut_new = new._get_inner_mut();
let chunks = unsafe { mut_new.chunks_mut() };
let chunk = self.chunks()[i].clone();
chunks.clear();
chunks.push(chunk);
mut_new.compute_len();
mut_new._set_flags(new_flags);
new
}
pub fn is_sorted_flag(&self) -> IsSorted {
if self.len() <= 1 {
return IsSorted::Ascending;
}
let flags = self.get_flags();
if flags.contains(MetadataFlags::SORTED_DSC) {
IsSorted::Descending
} else if flags.contains(MetadataFlags::SORTED_ASC) {
IsSorted::Ascending
} else {
IsSorted::Not
}
}
pub fn set_sorted_flag(&mut self, sorted: IsSorted) {
let mut flags = self.get_flags();
flags.set_sorted_flag(sorted);
self.set_flags(flags);
}
pub(crate) fn clear_flags(&mut self) {
self.set_flags(MetadataFlags::empty());
}
#[allow(dead_code)]
pub fn get_flags(&self) -> MetadataFlags {
self.0._get_flags()
}
pub(crate) fn set_flags(&mut self, flags: MetadataFlags) {
self._get_inner_mut()._set_flags(flags)
}
pub fn into_frame(self) -> DataFrame {
unsafe { DataFrame::new_no_checks(self.len(), vec![self.into()]) }
}
pub fn rename(&mut self, name: PlSmallStr) -> &mut Series {
self._get_inner_mut().rename(name);
self
}
pub fn with_name(mut self, name: PlSmallStr) -> Series {
self.rename(name);
self
}
pub fn try_set_metadata<T: PolarsDataType + 'static>(&mut self, metadata: Metadata<T>) -> bool {
let inner = self._get_inner_mut();
if &T::get_dtype() != inner.dtype() {
return false;
}
inner.as_mut().md = Arc::new(IMMetadata::new(metadata));
true
}
pub fn from_arrow_chunks(name: PlSmallStr, arrays: Vec<ArrayRef>) -> PolarsResult<Series> {
Self::try_from((name, arrays))
}
pub fn from_arrow(name: PlSmallStr, array: ArrayRef) -> PolarsResult<Series> {
Self::try_from((name, array))
}
pub fn shrink_to_fit(&mut self) {
self._get_inner_mut().shrink_to_fit()
}
pub fn append(&mut self, other: &Series) -> PolarsResult<&mut Self> {
let must_cast = other.dtype().matches_schema_type(self.dtype())?;
if must_cast {
let other = other.cast(self.dtype())?;
self._get_inner_mut().append(&other)?;
} else {
self._get_inner_mut().append(other)?;
}
Ok(self)
}
pub fn compute_len(&mut self) {
self._get_inner_mut().compute_len()
}
pub fn extend(&mut self, other: &Series) -> PolarsResult<&mut Self> {
let must_cast = other.dtype().matches_schema_type(self.dtype())?;
if must_cast {
let other = other.cast(self.dtype())?;
self._get_inner_mut().extend(&other)?;
} else {
self._get_inner_mut().extend(other)?;
}
Ok(self)
}
pub fn sort(&self, sort_options: SortOptions) -> PolarsResult<Self> {
self.sort_with(sort_options)
}
pub fn as_single_ptr(&mut self) -> PolarsResult<usize> {
self._get_inner_mut().as_single_ptr()
}
pub fn cast(&self, dtype: &DataType) -> PolarsResult<Self> {
self.cast_with_options(dtype, CastOptions::NonStrict)
}
pub fn cast_with_options(&self, dtype: &DataType, options: CastOptions) -> PolarsResult<Self> {
use DataType as D;
let do_clone = match dtype {
D::Unknown(UnknownKind::Any) => true,
D::Unknown(UnknownKind::Int(_)) if self.dtype().is_integer() => true,
D::Unknown(UnknownKind::Float) if self.dtype().is_float() => true,
D::Unknown(UnknownKind::Str)
if self.dtype().is_string() | self.dtype().is_categorical() =>
{
true
},
dt if dt.is_primitive() && dt == self.dtype() => true,
_ => false,
};
if do_clone {
return Ok(self.clone());
}
pub fn cast_dtype(dtype: &DataType) -> Option<DataType> {
match dtype {
D::Unknown(UnknownKind::Int(v)) => Some(materialize_dyn_int(*v).dtype()),
D::Unknown(UnknownKind::Float) => Some(DataType::Float64),
D::Unknown(UnknownKind::Str) => Some(DataType::String),
D::List(inner) => cast_dtype(inner.as_ref()).map(Box::new).map(D::List),
#[cfg(feature = "dtype-struct")]
D::Struct(fields) => {
let mut field_iter = fields.iter().enumerate();
let mut new_fields = loop {
let (i, field) = field_iter.next()?;
if let Some(dtype) = cast_dtype(&field.dtype) {
let mut new_fields = Vec::with_capacity(fields.len());
new_fields.extend(fields.iter().take(i).cloned());
new_fields.push(Field {
name: field.name.clone(),
dtype,
});
break new_fields;
}
};
new_fields.extend(fields.iter().skip(new_fields.len()).cloned().map(|field| {
let dtype = cast_dtype(&field.dtype).unwrap_or(field.dtype);
Field {
name: field.name.clone(),
dtype,
}
}));
Some(D::Struct(new_fields))
},
_ => None,
}
}
let casted = cast_dtype(dtype);
let dtype = match casted {
None => dtype,
Some(ref dtype) => dtype,
};
let len = self.len();
if self.null_count() == len {
return Ok(Series::full_null(self.name().clone(), len, dtype));
}
let new_options = match options {
CastOptions::Strict => CastOptions::NonStrict,
opt => opt,
};
let ret = self.0.cast(dtype, new_options);
match options {
CastOptions::NonStrict | CastOptions::Overflowing => ret,
CastOptions::Strict => {
let ret = ret?;
if self.null_count() != ret.null_count() {
handle_casting_failures(self, &ret)?;
}
Ok(ret)
},
}
}
pub unsafe fn cast_unchecked(&self, dtype: &DataType) -> PolarsResult<Self> {
match self.dtype() {
#[cfg(feature = "dtype-struct")]
DataType::Struct(_) => self.struct_().unwrap().cast_unchecked(dtype),
DataType::List(_) => self.list().unwrap().cast_unchecked(dtype),
dt if dt.is_numeric() => {
with_match_physical_numeric_polars_type!(dt, |$T| {
let ca: &ChunkedArray<$T> = self.as_ref().as_ref().as_ref();
ca.cast_unchecked(dtype)
})
},
DataType::Binary => self.binary().unwrap().cast_unchecked(dtype),
_ => self.cast_with_options(dtype, CastOptions::Overflowing),
}
}
pub fn to_float(&self) -> PolarsResult<Series> {
match self.dtype() {
DataType::Float32 | DataType::Float64 => Ok(self.clone()),
_ => self.cast_with_options(&DataType::Float64, CastOptions::Overflowing),
}
}
pub fn sum<T>(&self) -> PolarsResult<T>
where
T: NumCast,
{
let sum = self.sum_reduce()?;
let sum = sum.value().extract().unwrap();
Ok(sum)
}
pub fn min<T>(&self) -> PolarsResult<Option<T>>
where
T: NumCast,
{
let min = self.min_reduce()?;
let min = min.value().extract::<T>();
Ok(min)
}
pub fn max<T>(&self) -> PolarsResult<Option<T>>
where
T: NumCast,
{
let max = self.max_reduce()?;
let max = max.value().extract::<T>();
Ok(max)
}
pub fn explode(&self) -> PolarsResult<Series> {
match self.dtype() {
DataType::List(_) => self.list().unwrap().explode(),
#[cfg(feature = "dtype-array")]
DataType::Array(_, _) => self.array().unwrap().explode(),
_ => Ok(self.clone()),
}
}
pub fn is_nan(&self) -> PolarsResult<BooleanChunked> {
match self.dtype() {
DataType::Float32 => Ok(self.f32().unwrap().is_nan()),
DataType::Float64 => Ok(self.f64().unwrap().is_nan()),
dt if dt.is_numeric() => {
Ok(BooleanChunked::full(self.name().clone(), false, self.len()))
},
_ => polars_bail!(opq = is_nan, self.dtype()),
}
}
pub fn is_not_nan(&self) -> PolarsResult<BooleanChunked> {
match self.dtype() {
DataType::Float32 => Ok(self.f32().unwrap().is_not_nan()),
DataType::Float64 => Ok(self.f64().unwrap().is_not_nan()),
dt if dt.is_numeric() => {
Ok(BooleanChunked::full(self.name().clone(), true, self.len()))
},
_ => polars_bail!(opq = is_not_nan, self.dtype()),
}
}
pub fn is_finite(&self) -> PolarsResult<BooleanChunked> {
match self.dtype() {
DataType::Float32 => Ok(self.f32().unwrap().is_finite()),
DataType::Float64 => Ok(self.f64().unwrap().is_finite()),
dt if dt.is_numeric() => {
Ok(BooleanChunked::full(self.name().clone(), true, self.len()))
},
_ => polars_bail!(opq = is_finite, self.dtype()),
}
}
pub fn is_infinite(&self) -> PolarsResult<BooleanChunked> {
match self.dtype() {
DataType::Float32 => Ok(self.f32().unwrap().is_infinite()),
DataType::Float64 => Ok(self.f64().unwrap().is_infinite()),
dt if dt.is_numeric() => {
Ok(BooleanChunked::full(self.name().clone(), false, self.len()))
},
_ => polars_bail!(opq = is_infinite, self.dtype()),
}
}
#[cfg(feature = "zip_with")]
pub fn zip_with(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
let (lhs, rhs) = coerce_lhs_rhs(self, other)?;
lhs.zip_with_same_type(mask, rhs.as_ref())
}
pub fn to_physical_repr(&self) -> Cow<Series> {
use DataType::*;
match self.dtype() {
#[cfg(feature = "dtype-date")]
Date => Cow::Owned(self.date().unwrap().0.clone().into_series()),
#[cfg(feature = "dtype-datetime")]
Datetime(_, _) => Cow::Owned(self.datetime().unwrap().0.clone().into_series()),
#[cfg(feature = "dtype-duration")]
Duration(_) => Cow::Owned(self.duration().unwrap().0.clone().into_series()),
#[cfg(feature = "dtype-time")]
Time => Cow::Owned(self.time().unwrap().0.clone().into_series()),
#[cfg(feature = "dtype-categorical")]
Categorical(_, _) | Enum(_, _) => {
let ca = self.categorical().unwrap();
Cow::Owned(ca.physical().clone().into_series())
},
List(inner) => Cow::Owned(self.cast(&List(Box::new(inner.to_physical()))).unwrap()),
#[cfg(feature = "dtype-array")]
Array(inner, size) => Cow::Owned(
self.cast(&Array(Box::new(inner.to_physical()), *size))
.unwrap(),
),
#[cfg(feature = "dtype-struct")]
Struct(_) => {
let arr = self.struct_().unwrap();
let fields: Vec<_> = arr
.fields_as_series()
.iter()
.map(|s| s.to_physical_repr().into_owned())
.collect();
let mut ca =
StructChunked::from_series(self.name().clone(), arr.len(), fields.iter())
.unwrap();
if arr.null_count() > 0 {
ca.zip_outer_validity(arr);
}
Cow::Owned(ca.into_series())
},
_ => Cow::Borrowed(self),
}
}
pub unsafe fn to_logical_repr_unchecked(&self, dtype: &DataType) -> PolarsResult<Series> {
use DataType::*;
let err = || {
Err(
polars_err!(ComputeError: "can't cast from {} to {} in to_logical_repr_unchecked", self.dtype(), dtype),
)
};
match dtype {
dt if self.dtype() == dt => Ok(self.clone()),
#[cfg(feature = "dtype-date")]
Date => Ok(self.i32()?.clone().into_date().into_series()),
#[cfg(feature = "dtype-datetime")]
Datetime(u, z) => Ok(self
.i64()?
.clone()
.into_datetime(*u, z.clone())
.into_series()),
#[cfg(feature = "dtype-duration")]
Duration(u) => Ok(self.i64()?.clone().into_duration(*u).into_series()),
#[cfg(feature = "dtype-time")]
Time => Ok(self.i64()?.clone().into_time().into_series()),
#[cfg(feature = "dtype-categorical")]
Categorical { .. } | Enum { .. } => {
Ok(CategoricalChunked::from_cats_and_dtype_unchecked(
self.u32()?.clone(),
dtype.clone(),
)
.into_series())
},
List(inner) => {
if let List(self_inner) = self.dtype() {
if inner.to_physical() == **self_inner {
return self.cast(dtype);
}
}
err()
},
#[cfg(feature = "dtype-struct")]
Struct(target_fields) => {
let ca = self.struct_().unwrap();
if ca.struct_fields().len() != target_fields.len() {
return err();
}
let fields = ca
.fields_as_series()
.iter()
.zip(target_fields)
.map(|(s, tf)| s.to_logical_repr_unchecked(tf.dtype()))
.try_collect_vec()?;
let mut result =
StructChunked::from_series(self.name().clone(), ca.len(), fields.iter())?;
if ca.null_count() > 0 {
result.zip_outer_validity(ca);
}
Ok(result.into_series())
},
_ => err(),
}
}
pub fn gather_every(&self, n: usize, offset: usize) -> Series {
let idx = ((offset as IdxSize)..self.len() as IdxSize)
.step_by(n)
.collect_ca(PlSmallStr::EMPTY);
unsafe { self.take_unchecked(&idx) }
}
#[cfg(feature = "dot_product")]
pub fn dot(&self, other: &Series) -> PolarsResult<f64> {
std::ops::Mul::mul(self, other)?.sum::<f64>()
}
pub fn sum_reduce(&self) -> PolarsResult<Scalar> {
use DataType::*;
match self.dtype() {
Int8 | UInt8 | Int16 | UInt16 => self.cast(&Int64).unwrap().sum_reduce(),
_ => self.0.sum_reduce(),
}
}
pub fn product(&self) -> PolarsResult<Scalar> {
#[cfg(feature = "product")]
{
use DataType::*;
match self.dtype() {
Boolean => self.cast(&DataType::Int64).unwrap().product(),
Int8 | UInt8 | Int16 | UInt16 | Int32 | UInt32 => {
let s = self.cast(&Int64).unwrap();
s.product()
},
Int64 => Ok(self.i64().unwrap().prod_reduce()),
UInt64 => Ok(self.u64().unwrap().prod_reduce()),
Float32 => Ok(self.f32().unwrap().prod_reduce()),
Float64 => Ok(self.f64().unwrap().prod_reduce()),
dt => {
polars_bail!(InvalidOperation: "`product` operation not supported for dtype `{dt}`")
},
}
}
#[cfg(not(feature = "product"))]
{
panic!("activate 'product' feature")
}
}
pub fn strict_cast(&self, dtype: &DataType) -> PolarsResult<Series> {
self.cast_with_options(dtype, CastOptions::Strict)
}
#[cfg(feature = "dtype-time")]
pub(crate) fn into_time(self) -> Series {
match self.dtype() {
DataType::Int64 => self.i64().unwrap().clone().into_time().into_series(),
DataType::Time => self
.time()
.unwrap()
.as_ref()
.clone()
.into_time()
.into_series(),
dt => panic!("date not implemented for {dt:?}"),
}
}
pub(crate) fn into_date(self) -> Series {
#[cfg(not(feature = "dtype-date"))]
{
panic!("activate feature dtype-date")
}
#[cfg(feature = "dtype-date")]
match self.dtype() {
DataType::Int32 => self.i32().unwrap().clone().into_date().into_series(),
DataType::Date => self
.date()
.unwrap()
.as_ref()
.clone()
.into_date()
.into_series(),
dt => panic!("date not implemented for {dt:?}"),
}
}
#[allow(unused_variables)]
pub(crate) fn into_datetime(self, timeunit: TimeUnit, tz: Option<TimeZone>) -> Series {
#[cfg(not(feature = "dtype-datetime"))]
{
panic!("activate feature dtype-datetime")
}
#[cfg(feature = "dtype-datetime")]
match self.dtype() {
DataType::Int64 => self
.i64()
.unwrap()
.clone()
.into_datetime(timeunit, tz)
.into_series(),
DataType::Datetime(_, _) => self
.datetime()
.unwrap()
.as_ref()
.clone()
.into_datetime(timeunit, tz)
.into_series(),
dt => panic!("into_datetime not implemented for {dt:?}"),
}
}
#[allow(unused_variables)]
pub(crate) fn into_duration(self, timeunit: TimeUnit) -> Series {
#[cfg(not(feature = "dtype-duration"))]
{
panic!("activate feature dtype-duration")
}
#[cfg(feature = "dtype-duration")]
match self.dtype() {
DataType::Int64 => self
.i64()
.unwrap()
.clone()
.into_duration(timeunit)
.into_series(),
DataType::Duration(_) => self
.duration()
.unwrap()
.as_ref()
.clone()
.into_duration(timeunit)
.into_series(),
dt => panic!("into_duration not implemented for {dt:?}"),
}
}
pub fn str_value(&self, index: usize) -> PolarsResult<Cow<str>> {
Ok(self.0.get(index)?.str_value())
}
pub fn head(&self, length: Option<usize>) -> Series {
let len = length.unwrap_or(HEAD_DEFAULT_LENGTH);
self.slice(0, std::cmp::min(len, self.len()))
}
pub fn tail(&self, length: Option<usize>) -> Series {
let len = length.unwrap_or(TAIL_DEFAULT_LENGTH);
let len = std::cmp::min(len, self.len());
self.slice(-(len as i64), len)
}
pub fn mean_reduce(&self) -> Scalar {
crate::scalar::reduce::mean_reduce(self.mean(), self.dtype().clone())
}
pub fn unique_stable(&self) -> PolarsResult<Series> {
let idx = self.arg_unique()?;
unsafe { Ok(self.take_unchecked(&idx)) }
}
pub fn try_idx(&self) -> Option<&IdxCa> {
#[cfg(feature = "bigidx")]
{
self.try_u64()
}
#[cfg(not(feature = "bigidx"))]
{
self.try_u32()
}
}
pub fn idx(&self) -> PolarsResult<&IdxCa> {
#[cfg(feature = "bigidx")]
{
self.u64()
}
#[cfg(not(feature = "bigidx"))]
{
self.u32()
}
}
pub fn estimated_size(&self) -> usize {
let mut size = 0;
match self.dtype() {
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(Some(rv), _) | DataType::Enum(Some(rv), _) => match &**rv {
RevMapping::Local(arr, _) => size += estimated_bytes_size(arr),
RevMapping::Global(map, arr, _) => {
size += map.capacity() * size_of::<u32>() * 2 + estimated_bytes_size(arr);
},
},
#[cfg(feature = "object")]
DataType::Object(_, _) => {
let ArrowDataType::FixedSizeBinary(size) = self.chunks()[0].dtype() else {
unreachable!()
};
return self.len() * *size;
},
_ => {},
}
size += self
.chunks()
.iter()
.map(|arr| estimated_bytes_size(&**arr))
.sum::<usize>();
size
}
pub fn as_list(&self) -> ListChunked {
let s = self.rechunk();
let values = s.chunks()[0].clone();
let offsets = (0i64..(s.len() as i64 + 1)).collect::<Vec<_>>();
let offsets = unsafe { Offsets::new_unchecked(offsets) };
let dtype = LargeListArray::default_datatype(
s.dtype().to_physical().to_arrow(CompatLevel::newest()),
);
let new_arr = LargeListArray::new(dtype, offsets.into(), values, None);
let mut out = ListChunked::with_chunk(s.name().clone(), new_arr);
out.set_inner_dtype(s.dtype().clone());
out
}
}
impl Deref for Series {
type Target = dyn SeriesTrait;
fn deref(&self) -> &Self::Target {
self.0.as_ref()
}
}
impl<'a> AsRef<(dyn SeriesTrait + 'a)> for Series {
fn as_ref(&self) -> &(dyn SeriesTrait + 'a) {
self.0.as_ref()
}
}
impl Default for Series {
fn default() -> Self {
Int64Chunked::default().into_series()
}
}
fn equal_outer_type<T: 'static + PolarsDataType>(dtype: &DataType) -> bool {
match (T::get_dtype(), dtype) {
(DataType::List(_), DataType::List(_)) => true,
#[cfg(feature = "dtype-array")]
(DataType::Array(_, _), DataType::Array(_, _)) => true,
#[cfg(feature = "dtype-struct")]
(DataType::Struct(_), DataType::Struct(_)) => true,
(a, b) => &a == b,
}
}
impl<T> AsRef<ChunkedArray<T>> for dyn SeriesTrait + '_
where
T: 'static + PolarsDataType,
{
fn as_ref(&self) -> &ChunkedArray<T> {
let dtype = self.dtype();
#[cfg(feature = "dtype-decimal")]
if dtype.is_decimal() {
let logical = self.as_any().downcast_ref::<DecimalChunked>().unwrap();
let ca = logical.physical();
return ca.as_any().downcast_ref::<ChunkedArray<T>>().unwrap();
}
let eq = equal_outer_type::<T>(dtype);
assert!(
eq,
"implementation error, cannot get ref {:?} from {:?}",
T::get_dtype(),
self.dtype()
);
unsafe { &*(self as *const dyn SeriesTrait as *const ChunkedArray<T>) }
}
}
impl<T> AsMut<ChunkedArray<T>> for dyn SeriesTrait + '_
where
T: 'static + PolarsDataType,
{
fn as_mut(&mut self) -> &mut ChunkedArray<T> {
let eq = equal_outer_type::<T>(self.dtype());
assert!(
eq,
"implementation error, cannot get ref {:?} from {:?}",
T::get_dtype(),
self.dtype()
);
unsafe { &mut *(self as *mut dyn SeriesTrait as *mut ChunkedArray<T>) }
}
}
#[cfg(test)]
mod test {
use crate::prelude::*;
use crate::series::*;
#[test]
fn cast() {
let ar = UInt32Chunked::new("a".into(), &[1, 2]);
let s = ar.into_series();
let s2 = s.cast(&DataType::Int64).unwrap();
assert!(s2.i64().is_ok());
let s2 = s.cast(&DataType::Float32).unwrap();
assert!(s2.f32().is_ok());
}
#[test]
fn new_series() {
let _ = Series::new("boolean series".into(), &vec![true, false, true]);
let _ = Series::new("int series".into(), &[1, 2, 3]);
let ca = Int32Chunked::new("a".into(), &[1, 2, 3]);
let _ = ca.into_series();
}
#[test]
#[cfg(feature = "dtype-struct")]
fn new_series_from_empty_structs() {
let dtype = DataType::Struct(vec![]);
let empties = vec![AnyValue::StructOwned(Box::new((vec![], vec![]))); 3];
let s = Series::from_any_values_and_dtype("".into(), &empties, &dtype, false).unwrap();
assert_eq!(s.len(), 3);
}
#[test]
fn new_series_from_arrow_primitive_array() {
let array = UInt32Array::from_slice([1, 2, 3, 4, 5]);
let array_ref: ArrayRef = Box::new(array);
let _ = Series::try_new("foo".into(), array_ref).unwrap();
}
#[test]
fn series_append() {
let mut s1 = Series::new("a".into(), &[1, 2]);
let s2 = Series::new("b".into(), &[3]);
s1.append(&s2).unwrap();
assert_eq!(s1.len(), 3);
let s2 = Series::new("b".into(), &[3.0]);
assert!(s1.append(&s2).is_err())
}
#[test]
#[cfg(feature = "dtype-decimal")]
fn series_append_decimal() {
let s1 = Series::new("a".into(), &[1.1, 2.3])
.cast(&DataType::Decimal(None, Some(2)))
.unwrap();
let s2 = Series::new("b".into(), &[3])
.cast(&DataType::Decimal(None, Some(0)))
.unwrap();
{
let mut s1 = s1.clone();
s1.append(&s2).unwrap();
assert_eq!(s1.len(), 3);
assert_eq!(s1.get(2).unwrap(), AnyValue::Decimal(300, 2));
}
{
let mut s2 = s2.clone();
s2.extend(&s1).unwrap();
assert_eq!(s2.get(2).unwrap(), AnyValue::Decimal(2, 0));
}
}
#[test]
fn series_slice_works() {
let series = Series::new("a".into(), &[1i64, 2, 3, 4, 5]);
let slice_1 = series.slice(-3, 3);
let slice_2 = series.slice(-5, 5);
let slice_3 = series.slice(0, 5);
assert_eq!(slice_1.get(0).unwrap(), AnyValue::Int64(3));
assert_eq!(slice_2.get(0).unwrap(), AnyValue::Int64(1));
assert_eq!(slice_3.get(0).unwrap(), AnyValue::Int64(1));
}
#[test]
fn out_of_range_slice_does_not_panic() {
let series = Series::new("a".into(), &[1i64, 2, 3, 4, 5]);
let _ = series.slice(-3, 4);
let _ = series.slice(-6, 2);
let _ = series.slice(4, 2);
}
}