polars_expr/expressions/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
mod aggregation;
mod alias;
mod apply;
mod binary;
mod cast;
mod column;
mod count;
mod filter;
mod gather;
mod group_iter;
mod literal;
#[cfg(feature = "dynamic_group_by")]
mod rolling;
mod slice;
mod sort;
mod sortby;
mod ternary;
mod window;

use std::borrow::Cow;
use std::fmt::{Display, Formatter};

pub(crate) use aggregation::*;
pub(crate) use alias::*;
pub(crate) use apply::*;
use arrow::array::ArrayRef;
use arrow::legacy::utils::CustomIterTools;
pub(crate) use binary::*;
pub(crate) use cast::*;
pub(crate) use column::*;
pub(crate) use count::*;
pub(crate) use filter::*;
pub(crate) use gather::*;
pub(crate) use literal::*;
use polars_core::prelude::*;
use polars_io::predicates::PhysicalIoExpr;
use polars_plan::prelude::*;
#[cfg(feature = "dynamic_group_by")]
pub(crate) use rolling::RollingExpr;
pub(crate) use slice::*;
pub(crate) use sort::*;
pub(crate) use sortby::*;
pub(crate) use ternary::*;
pub use window::window_function_format_order_by;
pub(crate) use window::*;

use crate::state::ExecutionState;

#[derive(Clone, Debug)]
pub enum AggState {
    /// Already aggregated: `.agg_list(group_tuples`) is called
    /// and produced a `Series` of dtype `List`
    AggregatedList(Series),
    /// Already aggregated: `.agg` is called on an aggregation
    /// that produces a scalar.
    /// think of `sum`, `mean`, `variance` like aggregations.
    AggregatedScalar(Series),
    /// Not yet aggregated: `agg_list` still has to be called.
    NotAggregated(Series),
    Literal(Series),
}

impl AggState {
    fn try_map<F>(&self, func: F) -> PolarsResult<Self>
    where
        F: FnOnce(&Series) -> PolarsResult<Series>,
    {
        Ok(match self {
            AggState::AggregatedList(s) => AggState::AggregatedList(func(s)?),
            AggState::AggregatedScalar(s) => AggState::AggregatedScalar(func(s)?),
            AggState::Literal(s) => AggState::Literal(func(s)?),
            AggState::NotAggregated(s) => AggState::NotAggregated(func(s)?),
        })
    }
}

// lazy update strategy
#[cfg_attr(debug_assertions, derive(Debug))]
#[derive(PartialEq, Clone, Copy)]
pub(crate) enum UpdateGroups {
    /// don't update groups
    No,
    /// use the length of the current groups to determine new sorted indexes, preferred
    /// for performance
    WithGroupsLen,
    /// use the series list offsets to determine the new group lengths
    /// this one should be used when the length has changed. Note that
    /// the series should be aggregated state or else it will panic.
    WithSeriesLen,
}

#[cfg_attr(debug_assertions, derive(Debug))]
pub struct AggregationContext<'a> {
    /// Can be in one of two states
    /// 1. already aggregated as list
    /// 2. flat (still needs the grouptuples to aggregate)
    state: AggState,
    /// group tuples for AggState
    groups: Cow<'a, GroupsProxy>,
    /// if the group tuples are already used in a level above
    /// and the series is exploded, the group tuples are sorted
    /// e.g. the exploded Series is grouped per group.
    sorted: bool,
    /// This is used to determined if we need to update the groups
    /// into a sorted groups. We do this lazily, so that this work only is
    /// done when the groups are needed
    update_groups: UpdateGroups,
    /// This is true when the Series and GroupsProxy still have all
    /// their original values. Not the case when filtered
    original_len: bool,
}

impl<'a> AggregationContext<'a> {
    pub(crate) fn dtype(&self) -> DataType {
        match &self.state {
            AggState::Literal(s) => s.dtype().clone(),
            AggState::AggregatedList(s) => s.list().unwrap().inner_dtype().clone(),
            AggState::AggregatedScalar(s) => s.dtype().clone(),
            AggState::NotAggregated(s) => s.dtype().clone(),
        }
    }
    pub(crate) fn groups(&mut self) -> &Cow<'a, GroupsProxy> {
        match self.update_groups {
            UpdateGroups::No => {},
            UpdateGroups::WithGroupsLen => {
                // the groups are unordered
                // and the series is aggregated with this groups
                // so we need to recreate new grouptuples that
                // match the exploded Series
                let mut offset = 0 as IdxSize;

                match self.groups.as_ref() {
                    GroupsProxy::Idx(groups) => {
                        let groups = groups
                            .iter()
                            .map(|g| {
                                let len = g.1.len() as IdxSize;
                                let new_offset = offset + len;
                                let out = [offset, len];
                                offset = new_offset;
                                out
                            })
                            .collect();
                        self.groups = Cow::Owned(GroupsProxy::Slice {
                            groups,
                            rolling: false,
                        })
                    },
                    // sliced groups are already in correct order
                    GroupsProxy::Slice { .. } => {},
                }
                self.update_groups = UpdateGroups::No;
            },
            UpdateGroups::WithSeriesLen => {
                let s = self.series().clone();
                self.det_groups_from_list(&s);
            },
        }
        &self.groups
    }

    pub(crate) fn series(&self) -> &Series {
        match &self.state {
            AggState::NotAggregated(s)
            | AggState::AggregatedScalar(s)
            | AggState::AggregatedList(s) => s,
            AggState::Literal(s) => s,
        }
    }

    pub fn agg_state(&self) -> &AggState {
        &self.state
    }

    pub(crate) fn is_not_aggregated(&self) -> bool {
        matches!(
            &self.state,
            AggState::NotAggregated(_) | AggState::Literal(_)
        )
    }

    pub(crate) fn is_aggregated(&self) -> bool {
        !self.is_not_aggregated()
    }

    pub(crate) fn is_literal(&self) -> bool {
        matches!(self.state, AggState::Literal(_))
    }

    /// # Arguments
    /// - `aggregated` sets if the Series is a list due to aggregation (could also be a list because its
    ///   the columns dtype)
    fn new(
        series: Series,
        groups: Cow<'a, GroupsProxy>,
        aggregated: bool,
    ) -> AggregationContext<'a> {
        let series = match (aggregated, series.dtype()) {
            (true, &DataType::List(_)) => {
                assert_eq!(series.len(), groups.len());
                AggState::AggregatedList(series)
            },
            (true, _) => {
                assert_eq!(series.len(), groups.len());
                AggState::AggregatedScalar(series)
            },
            _ => AggState::NotAggregated(series),
        };

        Self {
            state: series,
            groups,
            sorted: false,
            update_groups: UpdateGroups::No,
            original_len: true,
        }
    }

    fn with_agg_state(&mut self, agg_state: AggState) {
        self.state = agg_state;
    }

    fn from_agg_state(agg_state: AggState, groups: Cow<'a, GroupsProxy>) -> AggregationContext<'a> {
        Self {
            state: agg_state,
            groups,
            sorted: false,
            update_groups: UpdateGroups::No,
            original_len: true,
        }
    }

    fn from_literal(lit: Series, groups: Cow<'a, GroupsProxy>) -> AggregationContext<'a> {
        Self {
            state: AggState::Literal(lit),
            groups,
            sorted: false,
            update_groups: UpdateGroups::No,
            original_len: true,
        }
    }

    pub(crate) fn set_original_len(&mut self, original_len: bool) -> &mut Self {
        self.original_len = original_len;
        self
    }

    pub(crate) fn with_update_groups(&mut self, update: UpdateGroups) -> &mut Self {
        self.update_groups = update;
        self
    }

    pub(crate) fn det_groups_from_list(&mut self, s: &Series) {
        let mut offset = 0 as IdxSize;
        let list = s
            .list()
            .expect("impl error, should be a list at this point");

        match list.chunks().len() {
            1 => {
                let arr = list.downcast_iter().next().unwrap();
                let offsets = arr.offsets().as_slice();

                let mut previous = 0i64;
                let groups = offsets[1..]
                    .iter()
                    .map(|&o| {
                        let len = (o - previous) as IdxSize;
                        // explode will fill empty rows with null, so we must increment the group
                        // offset accordingly
                        let new_offset = offset + len + (len == 0) as IdxSize;

                        previous = o;
                        let out = [offset, len];
                        offset = new_offset;
                        out
                    })
                    .collect_trusted();
                self.groups = Cow::Owned(GroupsProxy::Slice {
                    groups,
                    rolling: false,
                });
            },
            _ => {
                let groups = {
                    self.series()
                        .list()
                        .expect("impl error, should be a list at this point")
                        .amortized_iter()
                        .map(|s| {
                            if let Some(s) = s {
                                let len = s.as_ref().len() as IdxSize;
                                let new_offset = offset + len;
                                let out = [offset, len];
                                offset = new_offset;
                                out
                            } else {
                                [offset, 0]
                            }
                        })
                        .collect_trusted()
                };
                self.groups = Cow::Owned(GroupsProxy::Slice {
                    groups,
                    rolling: false,
                });
            },
        }
        self.update_groups = UpdateGroups::No;
    }

    /// # Arguments
    /// - `aggregated` sets if the Series is a list due to aggregation (could also be a list because its
    ///   the columns dtype)
    pub(crate) fn with_series(
        &mut self,
        series: Series,
        aggregated: bool,
        expr: Option<&Expr>,
    ) -> PolarsResult<&mut Self> {
        self.with_series_and_args(series, aggregated, expr, false)
    }

    pub(crate) fn with_series_and_args(
        &mut self,
        series: Series,
        aggregated: bool,
        expr: Option<&Expr>,
        // if the applied function was a `map` instead of an `apply`
        // this will keep functions applied over literals as literals: F(lit) = lit
        mapped: bool,
    ) -> PolarsResult<&mut Self> {
        self.state = match (aggregated, series.dtype()) {
            (true, &DataType::List(_)) => {
                if series.len() != self.groups.len() {
                    let fmt_expr = if let Some(e) = expr {
                        format!("'{e:?}' ")
                    } else {
                        String::new()
                    };
                    polars_bail!(
                        ComputeError:
                        "aggregation expression '{}' produced a different number of elements: {} \
                        than the number of groups: {} (this is likely invalid)",
                        fmt_expr, series.len(), self.groups.len(),
                    );
                }
                AggState::AggregatedList(series)
            },
            (true, _) => AggState::AggregatedScalar(series),
            _ => {
                match self.state {
                    // already aggregated to sum, min even this series was flattened it never could
                    // retrieve the length before grouping, so it stays  in this state.
                    AggState::AggregatedScalar(_) => AggState::AggregatedScalar(series),
                    // applying a function on a literal, keeps the literal state
                    AggState::Literal(_) if series.len() == 1 && mapped => {
                        AggState::Literal(series)
                    },
                    _ => AggState::NotAggregated(series),
                }
            },
        };
        Ok(self)
    }

    pub(crate) fn with_literal(&mut self, series: Series) -> &mut Self {
        self.state = AggState::Literal(series);
        self
    }

    /// Update the group tuples
    pub(crate) fn with_groups(&mut self, groups: GroupsProxy) -> &mut Self {
        if let AggState::AggregatedList(_) = self.agg_state() {
            // In case of new groups, a series always needs to be flattened
            self.with_series(self.flat_naive().into_owned(), false, None)
                .unwrap();
        }
        self.groups = Cow::Owned(groups);
        // make sure that previous setting is not used
        self.update_groups = UpdateGroups::No;
        self
    }

    /// Get the aggregated version of the series.
    pub fn aggregated(&mut self) -> Series {
        // we clone, because we only want to call `self.groups()` if needed.
        // self groups may instantiate new groups and thus can be expensive.
        match self.state.clone() {
            AggState::NotAggregated(s) => {
                // The groups are determined lazily and in case of a flat/non-aggregated
                // series we use the groups to aggregate the list
                // because this is lazy, we first must to update the groups
                // by calling .groups()
                self.groups();
                #[cfg(debug_assertions)]
                {
                    if self.groups.len() > s.len() {
                        polars_warn!("groups may be out of bounds; more groups than elements in a series is only possible in dynamic group_by")
                    }
                }

                // SAFETY:
                // groups are in bounds
                let out = unsafe { s.agg_list(&self.groups) };
                self.state = AggState::AggregatedList(out.clone());

                self.sorted = true;
                self.update_groups = UpdateGroups::WithGroupsLen;
                out
            },
            AggState::AggregatedList(s) | AggState::AggregatedScalar(s) => s,
            AggState::Literal(s) => {
                self.groups();
                let rows = self.groups.len();
                let s = s.new_from_index(0, rows);
                let out = s
                    .reshape_list(&[
                        ReshapeDimension::new_dimension(rows as u64),
                        ReshapeDimension::Infer,
                    ])
                    .unwrap();
                self.state = AggState::AggregatedList(out.clone());
                out
            },
        }
    }

    /// Get the final aggregated version of the series.
    pub fn finalize(&mut self) -> Series {
        // we clone, because we only want to call `self.groups()` if needed.
        // self groups may instantiate new groups and thus can be expensive.
        match &self.state {
            AggState::Literal(s) => {
                let s = s.clone();
                self.groups();
                let rows = self.groups.len();
                s.new_from_index(0, rows)
            },
            _ => self.aggregated(),
        }
    }

    // If a binary or ternary function has both of these branches true, it should
    // flatten the list
    fn arity_should_explode(&self) -> bool {
        use AggState::*;
        match self.agg_state() {
            Literal(s) => s.len() == 1,
            AggregatedScalar(_) => true,
            _ => false,
        }
    }

    pub fn get_final_aggregation(mut self) -> (Series, Cow<'a, GroupsProxy>) {
        let _ = self.groups();
        let groups = self.groups;
        match self.state {
            AggState::NotAggregated(s) => (s, groups),
            AggState::AggregatedScalar(s) => (s, groups),
            AggState::Literal(s) => (s, groups),
            AggState::AggregatedList(s) => {
                let flattened = s.explode().unwrap();
                let groups = groups.into_owned();
                // unroll the possible flattened state
                // say we have groups with overlapping windows:
                //
                // offset, len
                // 0, 1
                // 0, 2
                // 0, 4
                //
                // gets aggregation
                //
                // [0]
                // [0, 1],
                // [0, 1, 2, 3]
                //
                // before aggregation the column was
                // [0, 1, 2, 3]
                // but explode on this list yields
                // [0, 0, 1, 0, 1, 2, 3]
                //
                // so we unroll the groups as
                //
                // [0, 1]
                // [1, 2]
                // [3, 4]
                let groups = groups.unroll();
                (flattened, Cow::Owned(groups))
            },
        }
    }

    /// Get the not-aggregated version of the series.
    /// Note that we call it naive, because if a previous expr
    /// has filtered or sorted this, this information is in the
    /// group tuples not the flattened series.
    pub(crate) fn flat_naive(&self) -> Cow<'_, Series> {
        match &self.state {
            AggState::NotAggregated(s) => Cow::Borrowed(s),
            AggState::AggregatedList(s) => {
                #[cfg(debug_assertions)]
                {
                    // panic so we find cases where we accidentally explode overlapping groups
                    // we don't want this as this can create a lot of data
                    if let GroupsProxy::Slice { rolling: true, .. } = self.groups.as_ref() {
                        panic!("implementation error, polars should not hit this branch for overlapping groups")
                    }
                }

                Cow::Owned(s.explode().unwrap())
            },
            AggState::AggregatedScalar(s) => Cow::Borrowed(s),
            AggState::Literal(s) => Cow::Borrowed(s),
        }
    }

    /// Take the series.
    pub(crate) fn take(&mut self) -> Series {
        let s = match &mut self.state {
            AggState::NotAggregated(s)
            | AggState::AggregatedScalar(s)
            | AggState::AggregatedList(s) => s,
            AggState::Literal(s) => s,
        };
        std::mem::take(s)
    }
}

/// Take a DataFrame and evaluate the expressions.
/// Implement this for Column, lt, eq, etc
pub trait PhysicalExpr: Send + Sync {
    fn as_expression(&self) -> Option<&Expr> {
        None
    }

    /// Take a DataFrame and evaluate the expression.
    fn evaluate(&self, df: &DataFrame, _state: &ExecutionState) -> PolarsResult<Series>;

    /// Some expression that are not aggregations can be done per group
    /// Think of sort, slice, filter, shift, etc.
    /// defaults to ignoring the group
    ///
    /// This method is called by an aggregation function.
    ///
    /// In case of a simple expr, like 'column', the groups are ignored and the column is returned.
    /// In case of an expr where group behavior makes sense, this method is called.
    /// For a filter operation for instance, a Series is created per groups and filtered.
    ///
    /// An implementation of this method may apply an aggregation on the groups only. For instance
    /// on a shift, the groups are first aggregated to a `ListChunked` and the shift is applied per
    /// group. The implementation then has to return the `Series` exploded (because a later aggregation
    /// will use the group tuples to aggregate). The group tuples also have to be updated, because
    /// aggregation to a list sorts the exploded `Series` by group.
    ///
    /// This has some gotcha's. An implementation may also change the group tuples instead of
    /// the `Series`.
    ///
    // we allow this because we pass the vec to the Cow
    // Note to self: Don't be smart and dispatch to evaluate as default implementation
    // this means filters will be incorrect and lead to invalid results down the line
    #[allow(clippy::ptr_arg)]
    fn evaluate_on_groups<'a>(
        &self,
        df: &DataFrame,
        groups: &'a GroupsProxy,
        state: &ExecutionState,
    ) -> PolarsResult<AggregationContext<'a>>;

    /// Get the output field of this expr
    fn to_field(&self, input_schema: &Schema) -> PolarsResult<Field>;

    /// Convert to a partitioned aggregator.
    fn as_partitioned_aggregator(&self) -> Option<&dyn PartitionedAggregation> {
        None
    }

    /// Can take &dyn Statistics and determine of a file should be
    /// read -> `true`
    /// or not -> `false`
    fn as_stats_evaluator(&self) -> Option<&dyn polars_io::predicates::StatsEvaluator> {
        None
    }
    fn is_literal(&self) -> bool {
        false
    }
    fn is_scalar(&self) -> bool;
}

impl Display for &dyn PhysicalExpr {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self.as_expression() {
            None => Ok(()),
            Some(e) => write!(f, "{e:?}"),
        }
    }
}

/// Wrapper struct that allow us to use a PhysicalExpr in polars-io.
///
/// This is used to filter rows during the scan of file.
pub struct PhysicalIoHelper {
    pub expr: Arc<dyn PhysicalExpr>,
    pub has_window_function: bool,
}

impl PhysicalIoExpr for PhysicalIoHelper {
    fn evaluate_io(&self, df: &DataFrame) -> PolarsResult<Series> {
        let mut state: ExecutionState = Default::default();
        if self.has_window_function {
            state.insert_has_window_function_flag();
        }
        self.expr.evaluate(df, &state)
    }

    fn live_variables(&self) -> Option<Vec<PlSmallStr>> {
        Some(expr_to_leaf_column_names(self.expr.as_expression()?))
    }

    #[cfg(feature = "parquet")]
    fn as_stats_evaluator(&self) -> Option<&dyn polars_io::predicates::StatsEvaluator> {
        self.expr.as_stats_evaluator()
    }
}

pub fn phys_expr_to_io_expr(expr: Arc<dyn PhysicalExpr>) -> Arc<dyn PhysicalIoExpr> {
    let has_window_function = if let Some(expr) = expr.as_expression() {
        expr.into_iter()
            .any(|expr| matches!(expr, Expr::Window { .. }))
    } else {
        false
    };
    Arc::new(PhysicalIoHelper {
        expr,
        has_window_function,
    }) as Arc<dyn PhysicalIoExpr>
}

pub trait PartitionedAggregation: Send + Sync + PhysicalExpr {
    /// This is called in partitioned aggregation.
    /// Partitioned results may differ from aggregation results.
    /// For instance, for a `mean` operation a partitioned result
    /// needs to return the `sum` and the `valid_count` (length - null count).
    ///
    /// A final aggregation can then take the sum of sums and sum of valid_counts
    /// to produce a final mean.
    #[allow(clippy::ptr_arg)]
    fn evaluate_partitioned(
        &self,
        df: &DataFrame,
        groups: &GroupsProxy,
        state: &ExecutionState,
    ) -> PolarsResult<Series>;

    /// Called to merge all the partitioned results in a final aggregate.
    #[allow(clippy::ptr_arg)]
    fn finalize(
        &self,
        partitioned: Series,
        groups: &GroupsProxy,
        state: &ExecutionState,
    ) -> PolarsResult<Series>;
}