polars_expr/expressions/
window.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
use std::fmt::Write;

use arrow::array::PrimitiveArray;
use polars_core::export::arrow::bitmap::Bitmap;
use polars_core::prelude::*;
use polars_core::series::IsSorted;
use polars_core::utils::_split_offsets;
use polars_core::{downcast_as_macro_arg_physical, POOL};
use polars_ops::frame::join::{default_join_ids, private_left_join_multiple_keys, ChunkJoinOptIds};
use polars_ops::frame::SeriesJoin;
use polars_ops::prelude::*;
use polars_plan::prelude::*;
use polars_utils::sort::perfect_sort;
use polars_utils::sync::SyncPtr;
use rayon::prelude::*;

use super::*;

pub struct WindowExpr {
    /// the root column that the Function will be applied on.
    /// This will be used to create a smaller DataFrame to prevent taking unneeded columns by index
    pub(crate) group_by: Vec<Arc<dyn PhysicalExpr>>,
    pub(crate) order_by: Option<(Arc<dyn PhysicalExpr>, SortOptions)>,
    pub(crate) apply_columns: Vec<PlSmallStr>,
    pub(crate) out_name: Option<PlSmallStr>,
    /// A function Expr. i.e. Mean, Median, Max, etc.
    pub(crate) function: Expr,
    pub(crate) phys_function: Arc<dyn PhysicalExpr>,
    pub(crate) mapping: WindowMapping,
    pub(crate) expr: Expr,
}

#[cfg_attr(debug_assertions, derive(Debug))]
enum MapStrategy {
    // Join by key, this the most expensive
    // for reduced aggregations
    Join,
    // explode now
    Explode,
    // Use an arg_sort to map the values back
    Map,
    Nothing,
}

impl WindowExpr {
    fn map_list_agg_by_arg_sort(
        &self,
        out_column: Column,
        flattened: Column,
        mut ac: AggregationContext,
        gb: GroupBy,
        state: &ExecutionState,
        cache_key: &str,
    ) -> PolarsResult<Column> {
        // idx (new-idx, original-idx)
        let mut idx_mapping = Vec::with_capacity(out_column.len());

        // we already set this buffer so we can reuse the `original_idx` buffer
        // that saves an allocation
        let mut take_idx = vec![];

        // groups are not changed, we can map by doing a standard arg_sort.
        if std::ptr::eq(ac.groups().as_ref(), gb.get_groups()) {
            let mut iter = 0..flattened.len() as IdxSize;
            match ac.groups().as_ref() {
                GroupsProxy::Idx(groups) => {
                    for g in groups.all() {
                        idx_mapping.extend(g.iter().copied().zip(&mut iter));
                    }
                },
                GroupsProxy::Slice { groups, .. } => {
                    for &[first, len] in groups {
                        idx_mapping.extend((first..first + len).zip(&mut iter));
                    }
                },
            }
        }
        // groups are changed, we use the new group indexes as arguments of the arg_sort
        // and sort by the old indexes
        else {
            let mut original_idx = Vec::with_capacity(out_column.len());
            match gb.get_groups() {
                GroupsProxy::Idx(groups) => {
                    for g in groups.all() {
                        original_idx.extend_from_slice(g)
                    }
                },
                GroupsProxy::Slice { groups, .. } => {
                    for &[first, len] in groups {
                        original_idx.extend(first..first + len)
                    }
                },
            };

            let mut original_idx_iter = original_idx.iter().copied();

            match ac.groups().as_ref() {
                GroupsProxy::Idx(groups) => {
                    for g in groups.all() {
                        idx_mapping.extend(g.iter().copied().zip(&mut original_idx_iter));
                    }
                },
                GroupsProxy::Slice { groups, .. } => {
                    for &[first, len] in groups {
                        idx_mapping.extend((first..first + len).zip(&mut original_idx_iter));
                    }
                },
            }
            original_idx.clear();
            take_idx = original_idx;
        }
        cache_gb(gb, state, cache_key);
        // SAFETY:
        // we only have unique indices ranging from 0..len
        unsafe { perfect_sort(&POOL, &idx_mapping, &mut take_idx) };
        let idx = IdxCa::from_vec(PlSmallStr::EMPTY, take_idx);

        // SAFETY:
        // groups should always be in bounds.
        unsafe { Ok(flattened.take_unchecked(&idx)) }
    }

    #[allow(clippy::too_many_arguments)]
    fn map_by_arg_sort(
        &self,
        df: &DataFrame,
        out_column: Column,
        flattened: Column,
        mut ac: AggregationContext,
        group_by_columns: &[Column],
        gb: GroupBy,
        state: &ExecutionState,
        cache_key: &str,
    ) -> PolarsResult<Column> {
        // we use an arg_sort to map the values back

        // This is a bit more complicated because the final group tuples may differ from the original
        // so we use the original indices as idx values to arg_sort the original column
        //
        // The example below shows the naive version without group tuple mapping

        // columns
        // a b a a
        //
        // agg list
        // [0, 2, 3]
        // [1]
        //
        // flatten
        //
        // [0, 2, 3, 1]
        //
        // arg_sort
        //
        // [0, 3, 1, 2]
        //
        // take by arg_sorted indexes and voila groups mapped
        // [0, 1, 2, 3]

        if flattened.len() != df.height() {
            let ca = out_column.list().unwrap();
            let non_matching_group =
                ca.into_iter()
                    .zip(ac.groups().iter())
                    .find(|(output, group)| {
                        if let Some(output) = output {
                            output.as_ref().len() != group.len()
                        } else {
                            false
                        }
                    });

            if let Some((output, group)) = non_matching_group {
                let first = group.first();
                let group = group_by_columns
                    .iter()
                    .map(|s| format!("{}", s.get(first as usize).unwrap()))
                    .collect::<Vec<_>>();
                polars_bail!(
                    expr = self.expr, ComputeError:
                    "the length of the window expression did not match that of the group\
                    \n> group: {}\n> group length: {}\n> output: '{:?}'",
                    comma_delimited(String::new(), &group), group.len(), output.unwrap()
                );
            } else {
                polars_bail!(
                    expr = self.expr, ComputeError:
                    "the length of the window expression did not match that of the group"
                );
            };
        }
        self.map_list_agg_by_arg_sort(out_column, flattened, ac, gb, state, cache_key)
    }

    fn run_aggregation<'a>(
        &self,
        df: &DataFrame,
        state: &ExecutionState,
        gb: &'a GroupBy,
    ) -> PolarsResult<AggregationContext<'a>> {
        let ac = self
            .phys_function
            .evaluate_on_groups(df, gb.get_groups(), state)?;
        Ok(ac)
    }

    fn is_explicit_list_agg(&self) -> bool {
        // col("foo").implode()
        // col("foo").implode().alias()
        // ..
        // col("foo").implode().alias().alias()
        //
        // but not:
        // col("foo").implode().sum().alias()
        // ..
        // col("foo").min()
        let mut explicit_list = false;
        for e in &self.expr {
            if let Expr::Window { function, .. } = e {
                // or list().alias
                let mut finishes_list = false;
                for e in &**function {
                    match e {
                        Expr::Agg(AggExpr::Implode(_)) => {
                            finishes_list = true;
                        },
                        Expr::Alias(_, _) => {},
                        _ => break,
                    }
                }
                explicit_list = finishes_list;
            }
        }

        explicit_list
    }

    fn is_simple_column_expr(&self) -> bool {
        // col()
        // or col().alias()
        let mut simple_col = false;
        for e in &self.expr {
            if let Expr::Window { function, .. } = e {
                // or list().alias
                for e in &**function {
                    match e {
                        Expr::Column(_) => {
                            simple_col = true;
                        },
                        Expr::Alias(_, _) => {},
                        _ => break,
                    }
                }
            }
        }
        simple_col
    }

    fn is_aggregation(&self) -> bool {
        // col()
        // or col().agg()
        let mut agg_col = false;
        for e in &self.expr {
            if let Expr::Window { function, .. } = e {
                // or list().alias
                for e in &**function {
                    match e {
                        Expr::Agg(_) => {
                            agg_col = true;
                        },
                        Expr::Alias(_, _) => {},
                        _ => break,
                    }
                }
            }
        }
        agg_col
    }

    /// Check if the branches have an aggregation
    /// when(a > sum)
    /// then (foo)
    /// otherwise(bar - sum)
    fn has_different_group_sources(&self) -> bool {
        let mut has_arity = false;
        let mut agg_col = false;
        for e in &self.expr {
            if let Expr::Window { function, .. } = e {
                // or list().alias
                for e in &**function {
                    match e {
                        Expr::Ternary { .. } | Expr::BinaryExpr { .. } => {
                            has_arity = true;
                        },
                        Expr::Alias(_, _) => {},
                        Expr::Agg(_) => {
                            agg_col = true;
                        },
                        Expr::Function { options, .. }
                        | Expr::AnonymousFunction { options, .. } => {
                            if options.flags.contains(FunctionFlags::RETURNS_SCALAR)
                                && matches!(options.collect_groups, ApplyOptions::GroupWise)
                            {
                                agg_col = true;
                            }
                        },
                        _ => {},
                    }
                }
            }
        }
        has_arity && agg_col
    }

    fn determine_map_strategy(
        &self,
        agg_state: &AggState,
        gb: &GroupBy,
    ) -> PolarsResult<MapStrategy> {
        match (self.mapping, agg_state) {
            // Explode
            // `(col("x").sum() * col("y")).list().over("groups").flatten()`
            (WindowMapping::Explode, _) => Ok(MapStrategy::Explode),
            // // explicit list
            // // `(col("x").sum() * col("y")).list().over("groups")`
            // (false, false, _) => Ok(MapStrategy::Join),
            // aggregations
            //`sum("foo").over("groups")`
            (_, AggState::AggregatedScalar(_)) => Ok(MapStrategy::Join),
            // no explicit aggregations, map over the groups
            //`(col("x").sum() * col("y")).over("groups")`
            (WindowMapping::Join, AggState::AggregatedList(_)) => Ok(MapStrategy::Join),
            // no explicit aggregations, map over the groups
            //`(col("x").sum() * col("y")).over("groups")`
            (WindowMapping::GroupsToRows, AggState::AggregatedList(_)) => {
                if let GroupsProxy::Slice { .. } = gb.get_groups() {
                    // Result can be directly exploded if the input was sorted.
                    Ok(MapStrategy::Explode)
                } else {
                    Ok(MapStrategy::Map)
                }
            },
            // no aggregations, just return column
            // or an aggregation that has been flattened
            // we have to check which one
            //`col("foo").over("groups")`
            (WindowMapping::GroupsToRows, AggState::NotAggregated(_)) => {
                // col()
                // or col().alias()
                if self.is_simple_column_expr() {
                    Ok(MapStrategy::Nothing)
                } else {
                    Ok(MapStrategy::Map)
                }
            },
            (WindowMapping::Join, AggState::NotAggregated(_)) => Ok(MapStrategy::Join),
            // literals, do nothing and let broadcast
            (_, AggState::Literal(_)) => Ok(MapStrategy::Nothing),
        }
    }
}

// Utility to create partitions and cache keys
pub fn window_function_format_order_by(to: &mut String, e: &Expr, k: &SortOptions) {
    write!(to, "_PL_{:?}{}_{}", e, k.descending, k.nulls_last).unwrap();
}

impl PhysicalExpr for WindowExpr {
    // Note: this was first implemented with expression evaluation but this performed really bad.
    // Therefore we choose the group_by -> apply -> self join approach

    // This first cached the group_by and the join tuples, but rayon under a mutex leads to deadlocks:
    // https://github.com/rayon-rs/rayon/issues/592
    fn evaluate(&self, df: &DataFrame, state: &ExecutionState) -> PolarsResult<Column> {
        // This method does the following:
        // 1. determine group_by tuples based on the group_column
        // 2. apply an aggregation function
        // 3. join the results back to the original dataframe
        //    this stores all group values on the original df size
        //
        //      we have several strategies for this
        //      - 3.1 JOIN
        //          Use a join for aggregations like
        //              `sum("foo").over("groups")`
        //          and explicit `list` aggregations
        //              `(col("x").sum() * col("y")).list().over("groups")`
        //
        //      - 3.2 EXPLODE
        //          Explicit list aggregations that are followed by `over().flatten()`
        //          # the fastest method to do things over groups when the groups are sorted.
        //          # note that it will require an explicit `list()` call from now on.
        //              `(col("x").sum() * col("y")).list().over("groups").flatten()`
        //
        //      - 3.3. MAP to original locations
        //          This will be done for list aggregations that are not explicitly aggregated as list
        //              `(col("x").sum() * col("y")).over("groups")
        //          This can be used to reverse, sort, shuffle etc. the values in a group

        // 4. select the final column and return

        if df.is_empty() {
            let field = self.phys_function.to_field(&df.schema())?;
            return Ok(Column::full_null(field.name().clone(), 0, field.dtype()));
        }

        let group_by_columns = self
            .group_by
            .iter()
            .map(|e| e.evaluate(df, state).map(Column::from))
            .collect::<PolarsResult<Vec<_>>>()?;

        // if the keys are sorted
        let sorted_keys = group_by_columns.iter().all(|s| {
            matches!(
                s.is_sorted_flag(),
                IsSorted::Ascending | IsSorted::Descending
            )
        });
        let explicit_list_agg = self.is_explicit_list_agg();

        // if we flatten this column we need to make sure the groups are sorted.
        let mut sort_groups = matches!(self.mapping, WindowMapping::Explode) ||
            // if not
            //      `col().over()`
            // and not
            //      `col().list().over`
            // and not
            //      `col().sum()`
            // and keys are sorted
            //  we may optimize with explode call
            (!self.is_simple_column_expr() && !explicit_list_agg && sorted_keys && !self.is_aggregation());

        // overwrite sort_groups for some expressions
        // TODO: fully understand the rationale is here.
        if self.has_different_group_sources() {
            sort_groups = true
        }

        let create_groups = || {
            let gb = df.group_by_with_series(group_by_columns.clone(), true, sort_groups)?;
            let mut groups = gb.take_groups();

            if let Some((order_by, options)) = &self.order_by {
                let order_by = order_by.evaluate(df, state)?;
                polars_ensure!(order_by.len() == df.height(), ShapeMismatch: "the order by expression evaluated to a length: {} that doesn't match the input DataFrame: {}", order_by.len(), df.height());
                groups = update_groups_sort_by(&groups, order_by.as_materialized_series(), options)?
            }

            let out: PolarsResult<GroupsProxy> = Ok(groups);
            out
        };

        // Try to get cached grouptuples
        let (mut groups, _, cache_key) = if state.cache_window() {
            let mut cache_key = String::with_capacity(32 * group_by_columns.len());
            write!(&mut cache_key, "{}", state.branch_idx).unwrap();
            for s in &group_by_columns {
                cache_key.push_str(s.name());
            }
            if let Some((e, options)) = &self.order_by {
                let e = match e.as_expression() {
                    Some(e) => e,
                    None => {
                        polars_bail!(InvalidOperation: "cannot order by this expression in window function")
                    },
                };
                window_function_format_order_by(&mut cache_key, e, options)
            }

            let mut gt_map_guard = state.group_tuples.write().unwrap();
            // we run sequential and partitioned
            // and every partition run the cache should be empty so we expect a max of 1.
            debug_assert!(gt_map_guard.len() <= 1);
            if let Some(gt) = gt_map_guard.get_mut(&cache_key) {
                if df.height() > 0 {
                    assert!(!gt.is_empty());
                };

                // We take now, but it is important that we set this before we return!
                // a next windows function may get this cached key and get an empty if this
                // does not happen
                (std::mem::take(gt), true, cache_key)
            } else {
                // Drop guard as we go into rayon when creating groups.
                drop(gt_map_guard);
                (create_groups()?, false, cache_key)
            }
        } else {
            (create_groups()?, false, "".to_string())
        };

        // 2. create GroupBy object and apply aggregation
        let apply_columns = self.apply_columns.clone();

        // some window expressions need sorted groups
        // to make sure that the caches align we sort
        // the groups, so that the cached groups and join keys
        // are consistent among all windows
        if sort_groups || state.cache_window() {
            groups.sort()
        }
        let gb = GroupBy::new(df, group_by_columns.clone(), groups, Some(apply_columns));

        // If the aggregation creates categoricals and `MapStrategy` is `Join`,
        // the string cache was needed. So we hold it for that case.
        // Worst case is that a categorical is created with indexes from the string
        // cache which is fine, as the physical representation is undefined.
        #[cfg(feature = "dtype-categorical")]
        let _sc = polars_core::StringCacheHolder::hold();
        let mut ac = self.run_aggregation(df, state, &gb)?;

        use MapStrategy::*;
        match self.determine_map_strategy(ac.agg_state(), &gb)? {
            Nothing => {
                let mut out = ac.flat_naive().into_owned();

                if ac.is_literal() {
                    out = out.new_from_index(0, df.height())
                }
                cache_gb(gb, state, &cache_key);
                if let Some(name) = &self.out_name {
                    out.rename(name.clone());
                }
                Ok(out.into_column())
            },
            Explode => {
                let mut out = ac.aggregated().explode()?;
                cache_gb(gb, state, &cache_key);
                if let Some(name) = &self.out_name {
                    out.rename(name.clone());
                }
                Ok(out.into_column())
            },
            Map => {
                // TODO!
                // investigate if sorted arrays can be return directly
                let out_column = ac.aggregated();
                let flattened = out_column.explode()?;
                // we extend the lifetime as we must convince the compiler that ac lives
                // long enough. We drop `GrouBy` when we are done with `ac`.
                let ac = unsafe {
                    std::mem::transmute::<AggregationContext<'_>, AggregationContext<'static>>(ac)
                };
                self.map_by_arg_sort(
                    df,
                    out_column,
                    flattened,
                    ac,
                    &group_by_columns,
                    gb,
                    state,
                    &cache_key,
                )
                .map(Column::from)
            },
            Join => {
                let out_column = ac.aggregated();
                // we try to flatten/extend the array by repeating the aggregated value n times
                // where n is the number of members in that group. That way we can try to reuse
                // the same map by arg_sort logic as done for listed aggregations
                let update_groups = !matches!(&ac.update_groups, UpdateGroups::No);
                match (
                    &ac.update_groups,
                    set_by_groups(&out_column, &ac.groups, df.height(), update_groups),
                ) {
                    // for aggregations that reduce like sum, mean, first and are numeric
                    // we take the group locations to directly map them to the right place
                    (UpdateGroups::No, Some(out)) => {
                        cache_gb(gb, state, &cache_key);
                        Ok(out.into_column())
                    },
                    (_, _) => {
                        let keys = gb.keys();
                        cache_gb(gb, state, &cache_key);

                        let get_join_tuples = || {
                            if group_by_columns.len() == 1 {
                                // group key from right column
                                let right = &keys[0];
                                PolarsResult::Ok(
                                    group_by_columns[0]
                                        .as_materialized_series()
                                        .hash_join_left(
                                            right.as_materialized_series(),
                                            JoinValidation::ManyToMany,
                                            true,
                                        )
                                        .unwrap()
                                        .1,
                                )
                            } else {
                                let df_right =
                                    unsafe { DataFrame::new_no_checks_height_from_first(keys) };
                                let df_left = unsafe {
                                    DataFrame::new_no_checks_height_from_first(group_by_columns)
                                };
                                Ok(private_left_join_multiple_keys(&df_left, &df_right, true)?.1)
                            }
                        };

                        // try to get cached join_tuples
                        let join_opt_ids = if state.cache_window() {
                            let mut jt_map_guard = state.join_tuples.lock().unwrap();
                            // we run sequential and partitioned
                            // and every partition run the cache should be empty so we expect a max of 1.
                            debug_assert!(jt_map_guard.len() <= 1);
                            if let Some(opt_join_tuples) = jt_map_guard.get_mut(&cache_key) {
                                std::mem::replace(opt_join_tuples, default_join_ids())
                            } else {
                                // Drop guard as we go into rayon when computing join tuples.
                                drop(jt_map_guard);
                                get_join_tuples()?
                            }
                        } else {
                            get_join_tuples()?
                        };

                        let mut out = materialize_column(&join_opt_ids, &out_column);

                        if let Some(name) = &self.out_name {
                            out.rename(name.clone());
                        }

                        if state.cache_window() {
                            let mut jt_map = state.join_tuples.lock().unwrap();
                            jt_map.insert(cache_key, join_opt_ids);
                        }

                        Ok(out.into_column())
                    },
                }
            },
        }
    }

    fn to_field(&self, input_schema: &Schema) -> PolarsResult<Field> {
        self.function.to_field(input_schema, Context::Default)
    }

    fn is_scalar(&self) -> bool {
        false
    }

    #[allow(clippy::ptr_arg)]
    fn evaluate_on_groups<'a>(
        &self,
        _df: &DataFrame,
        _groups: &'a GroupsProxy,
        _state: &ExecutionState,
    ) -> PolarsResult<AggregationContext<'a>> {
        polars_bail!(InvalidOperation: "window expression not allowed in aggregation");
    }

    fn as_expression(&self) -> Option<&Expr> {
        Some(&self.expr)
    }
}

fn materialize_column(join_opt_ids: &ChunkJoinOptIds, out_column: &Column) -> Column {
    {
        use arrow::Either;
        use polars_ops::chunked_array::TakeChunked;

        match join_opt_ids {
            Either::Left(ids) => unsafe {
                IdxCa::with_nullable_idx(ids, |idx| out_column.take_unchecked(idx))
            },
            Either::Right(ids) => unsafe { out_column.take_opt_chunked_unchecked(ids) },
        }
    }
}

fn cache_gb(gb: GroupBy, state: &ExecutionState, cache_key: &str) {
    if state.cache_window() {
        let groups = gb.take_groups();
        let mut gt_map = state.group_tuples.write().unwrap();
        gt_map.insert(cache_key.to_string(), groups);
    }
}

/// Simple reducing aggregation can be set by the groups
fn set_by_groups(
    s: &Column,
    groups: &GroupsProxy,
    len: usize,
    update_groups: bool,
) -> Option<Column> {
    if update_groups {
        return None;
    }
    if s.dtype().to_physical().is_numeric() {
        let dtype = s.dtype();
        let s = s.to_physical_repr();

        macro_rules! dispatch {
            ($ca:expr) => {{
                Some(set_numeric($ca, groups, len))
            }};
        }
        downcast_as_macro_arg_physical!(&s, dispatch)
            .map(|s| s.cast(dtype).unwrap())
            .map(Column::from)
    } else {
        None
    }
}

fn set_numeric<T>(ca: &ChunkedArray<T>, groups: &GroupsProxy, len: usize) -> Series
where
    T: PolarsNumericType,
    ChunkedArray<T>: IntoSeries,
{
    let mut values = Vec::with_capacity(len);
    let ptr: *mut T::Native = values.as_mut_ptr();
    // SAFETY:
    // we will write from different threads but we will never alias.
    let sync_ptr_values = unsafe { SyncPtr::new(ptr) };

    if ca.null_count() == 0 {
        let ca = ca.rechunk();
        match groups {
            GroupsProxy::Idx(groups) => {
                let agg_vals = ca.cont_slice().expect("rechunked");
                POOL.install(|| {
                    agg_vals
                        .par_iter()
                        .zip(groups.all().par_iter())
                        .for_each(|(v, g)| {
                            let ptr = sync_ptr_values.get();
                            for idx in g.as_slice() {
                                debug_assert!((*idx as usize) < len);
                                unsafe { *ptr.add(*idx as usize) = *v }
                            }
                        })
                })
            },
            GroupsProxy::Slice { groups, .. } => {
                let agg_vals = ca.cont_slice().expect("rechunked");
                POOL.install(|| {
                    agg_vals
                        .par_iter()
                        .zip(groups.par_iter())
                        .for_each(|(v, [start, g_len])| {
                            let ptr = sync_ptr_values.get();
                            let start = *start as usize;
                            let end = start + *g_len as usize;
                            for idx in start..end {
                                debug_assert!(idx < len);
                                unsafe { *ptr.add(idx) = *v }
                            }
                        })
                });
            },
        }

        // SAFETY: we have written all slots
        unsafe { values.set_len(len) }
        ChunkedArray::new_vec(ca.name().clone(), values).into_series()
    } else {
        // We don't use a mutable bitmap as bits will have race conditions!
        // A single byte might alias if we write from single threads.
        let mut validity: Vec<bool> = vec![false; len];
        let validity_ptr = validity.as_mut_ptr();
        let sync_ptr_validity = unsafe { SyncPtr::new(validity_ptr) };

        let n_threads = POOL.current_num_threads();
        let offsets = _split_offsets(ca.len(), n_threads);

        match groups {
            GroupsProxy::Idx(groups) => offsets.par_iter().for_each(|(offset, offset_len)| {
                let offset = *offset;
                let offset_len = *offset_len;
                let ca = ca.slice(offset as i64, offset_len);
                let groups = &groups.all()[offset..offset + offset_len];
                let values_ptr = sync_ptr_values.get();
                let validity_ptr = sync_ptr_validity.get();

                ca.iter().zip(groups.iter()).for_each(|(opt_v, g)| {
                    for idx in g.as_slice() {
                        let idx = *idx as usize;
                        debug_assert!(idx < len);
                        unsafe {
                            match opt_v {
                                Some(v) => {
                                    *values_ptr.add(idx) = v;
                                    *validity_ptr.add(idx) = true;
                                },
                                None => {
                                    *values_ptr.add(idx) = T::Native::default();
                                    *validity_ptr.add(idx) = false;
                                },
                            };
                        }
                    }
                })
            }),
            GroupsProxy::Slice { groups, .. } => {
                offsets.par_iter().for_each(|(offset, offset_len)| {
                    let offset = *offset;
                    let offset_len = *offset_len;
                    let ca = ca.slice(offset as i64, offset_len);
                    let groups = &groups[offset..offset + offset_len];
                    let values_ptr = sync_ptr_values.get();
                    let validity_ptr = sync_ptr_validity.get();

                    for (opt_v, [start, g_len]) in ca.iter().zip(groups.iter()) {
                        let start = *start as usize;
                        let end = start + *g_len as usize;
                        for idx in start..end {
                            debug_assert!(idx < len);
                            unsafe {
                                match opt_v {
                                    Some(v) => {
                                        *values_ptr.add(idx) = v;
                                        *validity_ptr.add(idx) = true;
                                    },
                                    None => {
                                        *values_ptr.add(idx) = T::Native::default();
                                        *validity_ptr.add(idx) = false;
                                    },
                                };
                            }
                        }
                    }
                })
            },
        }
        // SAFETY: we have written all slots
        unsafe { values.set_len(len) }
        let validity = Bitmap::from(validity);
        let arr = PrimitiveArray::new(
            T::get_dtype().to_physical().to_arrow(CompatLevel::newest()),
            values.into(),
            Some(validity),
        );
        Series::try_from((ca.name().clone(), arr.boxed())).unwrap()
    }
}