use std::fs::File;
use std::path::PathBuf;
use polars_core::prelude::*;
#[cfg(feature = "temporal")]
use polars_time::prelude::*;
#[cfg(feature = "temporal")]
use rayon::prelude::*;
use super::options::CsvReadOptions;
use super::read_impl::batched::to_batched_owned;
use super::read_impl::CoreReader;
use super::{infer_file_schema, BatchedCsvReader, OwnedBatchedCsvReader};
use crate::mmap::MmapBytesReader;
use crate::path_utils::resolve_homedir;
use crate::predicates::PhysicalIoExpr;
use crate::shared::SerReader;
use crate::utils::get_reader_bytes;
#[must_use]
pub struct CsvReader<R>
where
R: MmapBytesReader,
{
reader: R,
options: CsvReadOptions,
predicate: Option<Arc<dyn PhysicalIoExpr>>,
}
impl<R> CsvReader<R>
where
R: MmapBytesReader,
{
pub fn _with_predicate(mut self, predicate: Option<Arc<dyn PhysicalIoExpr>>) -> Self {
self.predicate = predicate;
self
}
pub(crate) fn with_schema(mut self, schema: SchemaRef) -> Self {
self.options.schema = Some(schema);
self
}
pub(crate) fn get_schema(&self) -> Option<SchemaRef> {
self.options.schema.clone()
}
}
impl CsvReadOptions {
pub fn try_into_reader_with_file_path(
mut self,
path: Option<PathBuf>,
) -> PolarsResult<CsvReader<File>> {
if self.path.is_some() {
assert!(
path.is_none(),
"impl error: only 1 of self.path or the path parameter is to be non-null"
);
} else {
self.path = path;
};
assert!(
self.path.is_some(),
"impl error: either one of self.path or the path parameter is to be non-null"
);
let path = resolve_homedir(self.path.as_ref().unwrap());
let reader = polars_utils::open_file(&path)?;
let options = self;
Ok(CsvReader {
reader,
options,
predicate: None,
})
}
pub fn into_reader_with_file_handle<R: MmapBytesReader>(self, reader: R) -> CsvReader<R> {
let options = self;
CsvReader {
reader,
options,
predicate: Default::default(),
}
}
}
impl<R: MmapBytesReader> CsvReader<R> {
fn core_reader(&mut self) -> PolarsResult<CoreReader> {
let reader_bytes = get_reader_bytes(&mut self.reader)?;
let parse_options = self.options.get_parse_options();
CoreReader::new(
reader_bytes,
self.options.n_rows,
self.options.skip_rows,
self.options.projection.clone().map(|x| x.as_ref().clone()),
self.options.infer_schema_length,
Some(parse_options.separator),
self.options.has_header,
self.options.ignore_errors,
self.options.schema.clone(),
self.options.columns.clone(),
parse_options.encoding,
self.options.n_threads,
self.options.schema_overwrite.clone(),
self.options.dtype_overwrite.clone(),
self.options.chunk_size,
parse_options.comment_prefix.clone(),
parse_options.quote_char,
parse_options.eol_char,
parse_options.null_values.clone(),
parse_options.missing_is_null,
self.predicate.clone(),
self.options.fields_to_cast.clone(),
self.options.skip_rows_after_header,
self.options.row_index.clone(),
parse_options.try_parse_dates,
self.options.raise_if_empty,
parse_options.truncate_ragged_lines,
parse_options.decimal_comma,
)
}
fn prepare_schema(&mut self) -> PolarsResult<bool> {
let mut _has_categorical = false;
let mut process_schema = |schema: &Schema| {
schema
.iter_fields()
.map(|mut fld| {
use DataType::*;
match fld.dtype() {
Time => {
self.options.fields_to_cast.push(fld.clone());
fld.coerce(String);
Ok(fld)
},
#[cfg(feature = "dtype-categorical")]
Categorical(_, _) => {
_has_categorical = true;
Ok(fld)
},
#[cfg(feature = "dtype-decimal")]
Decimal(precision, scale) => match (precision, scale) {
(_, Some(_)) => {
self.options.fields_to_cast.push(fld.clone());
fld.coerce(String);
Ok(fld)
},
_ => Err(PolarsError::ComputeError(
"'scale' must be set when reading csv column as Decimal".into(),
)),
},
_ => Ok(fld),
}
})
.collect::<PolarsResult<Schema>>()
};
if let Some(schema) = self.options.schema.as_ref() {
self.options.schema = Some(Arc::new(process_schema(schema)?));
} else if let Some(schema) = self.options.schema_overwrite.as_ref() {
self.options.schema_overwrite = Some(Arc::new(process_schema(schema)?));
}
Ok(_has_categorical)
}
pub fn batched_borrowed(&mut self) -> PolarsResult<BatchedCsvReader> {
let has_cat = match self.options.schema_overwrite.as_deref() {
Some(_) => self.prepare_schema()?,
None => false,
};
let csv_reader = self.core_reader()?;
csv_reader.batched(has_cat)
}
}
impl CsvReader<Box<dyn MmapBytesReader>> {
pub fn batched(mut self, schema: Option<SchemaRef>) -> PolarsResult<OwnedBatchedCsvReader> {
match schema {
Some(schema) => Ok(to_batched_owned(self.with_schema(schema))),
None => {
let parse_options = self.options.get_parse_options();
let reader_bytes = get_reader_bytes(&mut self.reader)?;
let (inferred_schema, _, _) = infer_file_schema(
&reader_bytes,
parse_options.separator,
self.options.infer_schema_length,
self.options.has_header,
None,
self.options.skip_rows,
self.options.skip_rows_after_header,
parse_options.comment_prefix.as_ref(),
parse_options.quote_char,
parse_options.eol_char,
parse_options.null_values.as_ref(),
parse_options.try_parse_dates,
self.options.raise_if_empty,
&mut self.options.n_threads,
parse_options.decimal_comma,
)?;
let schema = Arc::new(inferred_schema);
Ok(to_batched_owned(self.with_schema(schema)))
},
}
}
}
impl<R> SerReader<R> for CsvReader<R>
where
R: MmapBytesReader,
{
fn new(reader: R) -> Self {
CsvReader {
reader,
options: Default::default(),
predicate: None,
}
}
fn finish(mut self) -> PolarsResult<DataFrame> {
let rechunk = self.options.rechunk;
let schema_overwrite = self.options.schema_overwrite.clone();
let low_memory = self.options.low_memory;
let _has_cat = self.prepare_schema()?;
#[cfg(feature = "dtype-categorical")]
let mut _cat_lock = if _has_cat {
Some(polars_core::StringCacheHolder::hold())
} else {
None
};
let mut csv_reader = self.core_reader()?;
let mut df = csv_reader.as_df()?;
if rechunk && df.n_chunks() > 1 {
if low_memory {
df.as_single_chunk();
} else {
df.as_single_chunk_par();
}
}
#[cfg(feature = "temporal")]
{
let parse_options = self.options.get_parse_options();
if parse_options.try_parse_dates {
let fixed_schema = match (schema_overwrite, self.options.dtype_overwrite) {
(Some(schema), _) => schema,
(None, Some(dtypes)) => {
let schema = dtypes
.iter()
.zip(df.get_column_names())
.map(|(dtype, name)| Field::new(name.clone(), dtype.clone()))
.collect::<Schema>();
Arc::new(schema)
},
_ => Arc::default(),
};
df = parse_dates(df, &fixed_schema)
}
}
Ok(df)
}
}
#[cfg(feature = "temporal")]
fn parse_dates(df: DataFrame, fixed_schema: &Schema) -> DataFrame {
use polars_core::POOL;
let height = df.height();
let cols = df.take_columns().into_par_iter().map(|c| {
match c.dtype() {
DataType::String => {
let ca = c.str().unwrap();
if fixed_schema.index_of(c.name()).is_some() {
return c;
}
#[cfg(feature = "dtype-time")]
if let Ok(ca) = ca.as_time(None, false) {
return ca.into_column();
}
c
},
_ => c,
}
});
let cols = POOL.install(|| cols.collect::<Vec<_>>());
unsafe { DataFrame::new_no_checks(height, cols) }
}