polars_io/utils/
other.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#[cfg(any(feature = "ipc_streaming", feature = "parquet"))]
use std::borrow::Cow;
use std::io::Read;

use once_cell::sync::Lazy;
use polars_core::prelude::*;
#[cfg(any(feature = "ipc_streaming", feature = "parquet"))]
use polars_core::utils::{accumulate_dataframes_vertical_unchecked, split_df_as_ref};
use polars_utils::mmap::{MMapSemaphore, MemSlice};
use regex::{Regex, RegexBuilder};

use crate::mmap::{MmapBytesReader, ReaderBytes};

pub fn get_reader_bytes<R: Read + MmapBytesReader + ?Sized>(
    reader: &mut R,
) -> PolarsResult<ReaderBytes<'_>> {
    // we have a file so we can mmap
    // only seekable files are mmap-able
    if let Some((file, offset)) = reader
        .stream_position()
        .ok()
        .and_then(|offset| Some((reader.to_file()?, offset)))
    {
        let mut options = memmap::MmapOptions::new();
        options.offset(offset);
        let mmap = MMapSemaphore::new_from_file_with_options(file, options)?;
        Ok(ReaderBytes::Owned(MemSlice::from_mmap(Arc::new(mmap))))
    } else {
        // we can get the bytes for free
        if reader.to_bytes().is_some() {
            // duplicate .to_bytes() is necessary to satisfy the borrow checker
            Ok(ReaderBytes::Borrowed((*reader).to_bytes().unwrap()))
        } else {
            // we have to read to an owned buffer to get the bytes.
            let mut bytes = Vec::with_capacity(1024 * 128);
            reader.read_to_end(&mut bytes)?;
            Ok(ReaderBytes::Owned(bytes.into()))
        }
    }
}

#[cfg(any(
    feature = "ipc",
    feature = "ipc_streaming",
    feature = "parquet",
    feature = "avro"
))]
pub(crate) fn apply_projection(schema: &ArrowSchema, projection: &[usize]) -> ArrowSchema {
    projection
        .iter()
        .map(|idx| schema.get_at_index(*idx).unwrap())
        .map(|(k, v)| (k.clone(), v.clone()))
        .collect()
}

#[cfg(any(
    feature = "ipc",
    feature = "ipc_streaming",
    feature = "avro",
    feature = "parquet"
))]
pub(crate) fn columns_to_projection(
    columns: &[String],
    schema: &ArrowSchema,
) -> PolarsResult<Vec<usize>> {
    let mut prj = Vec::with_capacity(columns.len());

    for column in columns {
        let i = schema.try_index_of(column)?;
        prj.push(i);
    }

    Ok(prj)
}

#[cfg(debug_assertions)]
fn check_offsets(dfs: &[DataFrame]) {
    dfs.windows(2).for_each(|s| {
        let a = &s[0].get_columns()[0];
        let b = &s[1].get_columns()[0];

        let prev = a.get(a.len() - 1).unwrap().extract::<usize>().unwrap();
        let next = b.get(0).unwrap().extract::<usize>().unwrap();
        assert_eq!(prev + 1, next);
    })
}

/// Because of threading every row starts from `0` or from `offset`.
/// We must correct that so that they are monotonically increasing.
#[cfg(any(feature = "csv", feature = "json"))]
pub(crate) fn update_row_counts2(dfs: &mut [DataFrame], offset: IdxSize) {
    if !dfs.is_empty() {
        let mut previous = offset;
        for df in &mut *dfs {
            if df.is_empty() {
                continue;
            }
            let n_read = df.height() as IdxSize;
            if let Some(s) = unsafe { df.get_columns_mut() }.get_mut(0) {
                if let Ok(v) = s.get(0) {
                    if v.extract::<usize>().unwrap() != previous as usize {
                        *s = &*s + previous;
                    }
                }
            }
            previous += n_read;
        }
    }
    #[cfg(debug_assertions)]
    {
        check_offsets(dfs)
    }
}

/// Because of threading every row starts from `0` or from `offset`.
/// We must correct that so that they are monotonically increasing.
#[cfg(feature = "json")]
pub(crate) fn update_row_counts3(dfs: &mut [DataFrame], heights: &[IdxSize], offset: IdxSize) {
    assert_eq!(dfs.len(), heights.len());
    if !dfs.is_empty() {
        let mut previous = offset;
        for i in 0..dfs.len() {
            let df = &mut dfs[i];
            if df.is_empty() {
                continue;
            }

            if let Some(s) = unsafe { df.get_columns_mut() }.get_mut(0) {
                if let Ok(v) = s.get(0) {
                    if v.extract::<usize>().unwrap() != previous as usize {
                        *s = &*s + previous;
                    }
                }
            }
            let n_read = heights[i];
            previous += n_read;
        }
    }
}

#[cfg(feature = "json")]
pub fn overwrite_schema(schema: &mut Schema, overwriting_schema: &Schema) -> PolarsResult<()> {
    for (k, value) in overwriting_schema.iter() {
        *schema.try_get_mut(k)? = value.clone();
    }
    Ok(())
}

pub static FLOAT_RE: Lazy<Regex> = Lazy::new(|| {
    Regex::new(r"^[-+]?((\d*\.\d+)([eE][-+]?\d+)?|inf|NaN|(\d+)[eE][-+]?\d+|\d+\.)$").unwrap()
});

pub static FLOAT_RE_DECIMAL: Lazy<Regex> = Lazy::new(|| {
    Regex::new(r"^[-+]?((\d*,\d+)([eE][-+]?\d+)?|inf|NaN|(\d+)[eE][-+]?\d+|\d+,)$").unwrap()
});

pub static INTEGER_RE: Lazy<Regex> = Lazy::new(|| Regex::new(r"^-?(\d+)$").unwrap());

pub static BOOLEAN_RE: Lazy<Regex> = Lazy::new(|| {
    RegexBuilder::new(r"^(true|false)$")
        .case_insensitive(true)
        .build()
        .unwrap()
});

pub fn materialize_projection(
    with_columns: Option<&[PlSmallStr]>,
    schema: &Schema,
    hive_partitions: Option<&[Series]>,
    has_row_index: bool,
) -> Option<Vec<usize>> {
    match hive_partitions {
        None => with_columns.map(|with_columns| {
            with_columns
                .iter()
                .map(|name| schema.index_of(name).unwrap() - has_row_index as usize)
                .collect()
        }),
        Some(part_cols) => {
            with_columns.map(|with_columns| {
                with_columns
                    .iter()
                    .flat_map(|name| {
                        // the hive partitions are added at the end of the schema, but we don't want to project
                        // them from the file
                        if part_cols.iter().any(|s| s.name() == name.as_str()) {
                            None
                        } else {
                            Some(schema.index_of(name).unwrap() - has_row_index as usize)
                        }
                    })
                    .collect()
            })
        },
    }
}

/// Split DataFrame into chunks in preparation for writing. The chunks have a
/// maximum number of rows per chunk to ensure reasonable memory efficiency when
/// reading the resulting file, and a minimum size per chunk to ensure
/// reasonable performance when writing.
#[cfg(any(feature = "ipc_streaming", feature = "parquet"))]
pub(crate) fn chunk_df_for_writing(
    df: &mut DataFrame,
    row_group_size: usize,
) -> PolarsResult<Cow<DataFrame>> {
    // ensures all chunks are aligned.
    df.align_chunks_par();

    // Accumulate many small chunks to the row group size.
    // See: #16403
    if !df.get_columns().is_empty()
        && df.get_columns()[0]
            .as_materialized_series()
            .chunk_lengths()
            .take(5)
            .all(|len| len < row_group_size)
    {
        fn finish(scratch: &mut Vec<DataFrame>, new_chunks: &mut Vec<DataFrame>) {
            let mut new = accumulate_dataframes_vertical_unchecked(scratch.drain(..));
            new.as_single_chunk_par();
            new_chunks.push(new);
        }

        let mut new_chunks = Vec::with_capacity(df.n_chunks()); // upper limit;
        let mut scratch = vec![];
        let mut remaining = row_group_size;

        for df in df.split_chunks() {
            remaining = remaining.saturating_sub(df.height());
            scratch.push(df);

            if remaining == 0 {
                remaining = row_group_size;
                finish(&mut scratch, &mut new_chunks);
            }
        }
        if !scratch.is_empty() {
            finish(&mut scratch, &mut new_chunks);
        }
        return Ok(Cow::Owned(accumulate_dataframes_vertical_unchecked(
            new_chunks,
        )));
    }

    let n_splits = df.height() / row_group_size;
    let result = if n_splits > 0 {
        let mut splits = split_df_as_ref(df, n_splits, false);

        for df in splits.iter_mut() {
            // If the chunks are small enough, writing many small chunks
            // leads to slow writing performance, so in that case we
            // merge them.
            let n_chunks = df.n_chunks();
            if n_chunks > 1 && (df.estimated_size() / n_chunks < 128 * 1024) {
                df.as_single_chunk_par();
            }
        }

        Cow::Owned(accumulate_dataframes_vertical_unchecked(splits))
    } else {
        Cow::Borrowed(df)
    };
    Ok(result)
}

#[cfg(test)]
mod tests {
    use super::FLOAT_RE;

    #[test]
    fn test_float_parse() {
        assert!(FLOAT_RE.is_match("0.1"));
        assert!(FLOAT_RE.is_match("3.0"));
        assert!(FLOAT_RE.is_match("3.00001"));
        assert!(FLOAT_RE.is_match("-9.9990e-003"));
        assert!(FLOAT_RE.is_match("9.9990e+003"));
        assert!(FLOAT_RE.is_match("9.9990E+003"));
        assert!(FLOAT_RE.is_match("9.9990E+003"));
        assert!(FLOAT_RE.is_match(".5"));
        assert!(FLOAT_RE.is_match("2.5E-10"));
        assert!(FLOAT_RE.is_match("2.5e10"));
        assert!(FLOAT_RE.is_match("NaN"));
        assert!(FLOAT_RE.is_match("-NaN"));
        assert!(FLOAT_RE.is_match("-inf"));
        assert!(FLOAT_RE.is_match("inf"));
        assert!(FLOAT_RE.is_match("-7e-05"));
        assert!(FLOAT_RE.is_match("7e-05"));
        assert!(FLOAT_RE.is_match("+7e+05"));
    }
}