#[cfg(any(feature = "ipc_streaming", feature = "parquet"))]
use std::borrow::Cow;
use std::io::Read;
use once_cell::sync::Lazy;
use polars_core::prelude::*;
#[cfg(any(feature = "ipc_streaming", feature = "parquet"))]
use polars_core::utils::{accumulate_dataframes_vertical_unchecked, split_df_as_ref};
use polars_utils::mmap::{MMapSemaphore, MemSlice};
use regex::{Regex, RegexBuilder};
use crate::mmap::{MmapBytesReader, ReaderBytes};
pub fn get_reader_bytes<R: Read + MmapBytesReader + ?Sized>(
reader: &mut R,
) -> PolarsResult<ReaderBytes<'_>> {
if let Some((file, offset)) = reader
.stream_position()
.ok()
.and_then(|offset| Some((reader.to_file()?, offset)))
{
let mut options = memmap::MmapOptions::new();
options.offset(offset);
let mmap = MMapSemaphore::new_from_file_with_options(file, options)?;
Ok(ReaderBytes::Owned(MemSlice::from_mmap(Arc::new(mmap))))
} else {
if reader.to_bytes().is_some() {
Ok(ReaderBytes::Borrowed((*reader).to_bytes().unwrap()))
} else {
let mut bytes = Vec::with_capacity(1024 * 128);
reader.read_to_end(&mut bytes)?;
Ok(ReaderBytes::Owned(bytes.into()))
}
}
}
#[cfg(any(
feature = "ipc",
feature = "ipc_streaming",
feature = "parquet",
feature = "avro"
))]
pub(crate) fn apply_projection(schema: &ArrowSchema, projection: &[usize]) -> ArrowSchema {
projection
.iter()
.map(|idx| schema.get_at_index(*idx).unwrap())
.map(|(k, v)| (k.clone(), v.clone()))
.collect()
}
#[cfg(any(
feature = "ipc",
feature = "ipc_streaming",
feature = "avro",
feature = "parquet"
))]
pub(crate) fn columns_to_projection(
columns: &[String],
schema: &ArrowSchema,
) -> PolarsResult<Vec<usize>> {
let mut prj = Vec::with_capacity(columns.len());
for column in columns {
let i = schema.try_index_of(column)?;
prj.push(i);
}
Ok(prj)
}
#[cfg(debug_assertions)]
fn check_offsets(dfs: &[DataFrame]) {
dfs.windows(2).for_each(|s| {
let a = &s[0].get_columns()[0];
let b = &s[1].get_columns()[0];
let prev = a.get(a.len() - 1).unwrap().extract::<usize>().unwrap();
let next = b.get(0).unwrap().extract::<usize>().unwrap();
assert_eq!(prev + 1, next);
})
}
#[cfg(any(feature = "csv", feature = "json"))]
pub(crate) fn update_row_counts2(dfs: &mut [DataFrame], offset: IdxSize) {
if !dfs.is_empty() {
let mut previous = offset;
for df in &mut *dfs {
if df.is_empty() {
continue;
}
let n_read = df.height() as IdxSize;
if let Some(s) = unsafe { df.get_columns_mut() }.get_mut(0) {
if let Ok(v) = s.get(0) {
if v.extract::<usize>().unwrap() != previous as usize {
*s = &*s + previous;
}
}
}
previous += n_read;
}
}
#[cfg(debug_assertions)]
{
check_offsets(dfs)
}
}
#[cfg(feature = "json")]
pub(crate) fn update_row_counts3(dfs: &mut [DataFrame], heights: &[IdxSize], offset: IdxSize) {
assert_eq!(dfs.len(), heights.len());
if !dfs.is_empty() {
let mut previous = offset;
for i in 0..dfs.len() {
let df = &mut dfs[i];
if df.is_empty() {
continue;
}
if let Some(s) = unsafe { df.get_columns_mut() }.get_mut(0) {
if let Ok(v) = s.get(0) {
if v.extract::<usize>().unwrap() != previous as usize {
*s = &*s + previous;
}
}
}
let n_read = heights[i];
previous += n_read;
}
}
}
#[cfg(feature = "json")]
pub fn overwrite_schema(schema: &mut Schema, overwriting_schema: &Schema) -> PolarsResult<()> {
for (k, value) in overwriting_schema.iter() {
*schema.try_get_mut(k)? = value.clone();
}
Ok(())
}
pub static FLOAT_RE: Lazy<Regex> = Lazy::new(|| {
Regex::new(r"^[-+]?((\d*\.\d+)([eE][-+]?\d+)?|inf|NaN|(\d+)[eE][-+]?\d+|\d+\.)$").unwrap()
});
pub static FLOAT_RE_DECIMAL: Lazy<Regex> = Lazy::new(|| {
Regex::new(r"^[-+]?((\d*,\d+)([eE][-+]?\d+)?|inf|NaN|(\d+)[eE][-+]?\d+|\d+,)$").unwrap()
});
pub static INTEGER_RE: Lazy<Regex> = Lazy::new(|| Regex::new(r"^-?(\d+)$").unwrap());
pub static BOOLEAN_RE: Lazy<Regex> = Lazy::new(|| {
RegexBuilder::new(r"^(true|false)$")
.case_insensitive(true)
.build()
.unwrap()
});
pub fn materialize_projection(
with_columns: Option<&[PlSmallStr]>,
schema: &Schema,
hive_partitions: Option<&[Series]>,
has_row_index: bool,
) -> Option<Vec<usize>> {
match hive_partitions {
None => with_columns.map(|with_columns| {
with_columns
.iter()
.map(|name| schema.index_of(name).unwrap() - has_row_index as usize)
.collect()
}),
Some(part_cols) => {
with_columns.map(|with_columns| {
with_columns
.iter()
.flat_map(|name| {
if part_cols.iter().any(|s| s.name() == name.as_str()) {
None
} else {
Some(schema.index_of(name).unwrap() - has_row_index as usize)
}
})
.collect()
})
},
}
}
#[cfg(any(feature = "ipc_streaming", feature = "parquet"))]
pub(crate) fn chunk_df_for_writing(
df: &mut DataFrame,
row_group_size: usize,
) -> PolarsResult<Cow<DataFrame>> {
df.align_chunks_par();
if !df.get_columns().is_empty()
&& df.get_columns()[0]
.as_materialized_series()
.chunk_lengths()
.take(5)
.all(|len| len < row_group_size)
{
fn finish(scratch: &mut Vec<DataFrame>, new_chunks: &mut Vec<DataFrame>) {
let mut new = accumulate_dataframes_vertical_unchecked(scratch.drain(..));
new.as_single_chunk_par();
new_chunks.push(new);
}
let mut new_chunks = Vec::with_capacity(df.n_chunks()); let mut scratch = vec![];
let mut remaining = row_group_size;
for df in df.split_chunks() {
remaining = remaining.saturating_sub(df.height());
scratch.push(df);
if remaining == 0 {
remaining = row_group_size;
finish(&mut scratch, &mut new_chunks);
}
}
if !scratch.is_empty() {
finish(&mut scratch, &mut new_chunks);
}
return Ok(Cow::Owned(accumulate_dataframes_vertical_unchecked(
new_chunks,
)));
}
let n_splits = df.height() / row_group_size;
let result = if n_splits > 0 {
let mut splits = split_df_as_ref(df, n_splits, false);
for df in splits.iter_mut() {
let n_chunks = df.n_chunks();
if n_chunks > 1 && (df.estimated_size() / n_chunks < 128 * 1024) {
df.as_single_chunk_par();
}
}
Cow::Owned(accumulate_dataframes_vertical_unchecked(splits))
} else {
Cow::Borrowed(df)
};
Ok(result)
}
#[cfg(test)]
mod tests {
use super::FLOAT_RE;
#[test]
fn test_float_parse() {
assert!(FLOAT_RE.is_match("0.1"));
assert!(FLOAT_RE.is_match("3.0"));
assert!(FLOAT_RE.is_match("3.00001"));
assert!(FLOAT_RE.is_match("-9.9990e-003"));
assert!(FLOAT_RE.is_match("9.9990e+003"));
assert!(FLOAT_RE.is_match("9.9990E+003"));
assert!(FLOAT_RE.is_match("9.9990E+003"));
assert!(FLOAT_RE.is_match(".5"));
assert!(FLOAT_RE.is_match("2.5E-10"));
assert!(FLOAT_RE.is_match("2.5e10"));
assert!(FLOAT_RE.is_match("NaN"));
assert!(FLOAT_RE.is_match("-NaN"));
assert!(FLOAT_RE.is_match("-inf"));
assert!(FLOAT_RE.is_match("inf"));
assert!(FLOAT_RE.is_match("-7e-05"));
assert!(FLOAT_RE.is_match("7e-05"));
assert!(FLOAT_RE.is_match("+7e+05"));
}
}