1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//! # Functions
//!
//! Functions on expressions that might be useful.
//!
use crate::prelude::*;
use polars_core::prelude::*;

/// Compute the covariance between two columns.
pub fn cov(a: Expr, b: Expr) -> Expr {
    let name = "cov";
    let function = move |a: Series, b: Series| {
        let s = match a.dtype() {
            DataType::Float32 => {
                let ca_a = a.f32().unwrap();
                let ca_b = b.f32().unwrap();
                Series::new(name, &[polars_core::functions::cov(ca_a, ca_b)])
            }
            DataType::Float64 => {
                let ca_a = a.f64().unwrap();
                let ca_b = b.f64().unwrap();
                Series::new(name, &[polars_core::functions::cov(ca_a, ca_b)])
            }
            _ => {
                let a = a.cast(&DataType::Float64)?;
                let b = b.cast(&DataType::Float64)?;
                let ca_a = a.f64().unwrap();
                let ca_b = b.f64().unwrap();
                Series::new(name, &[polars_core::functions::cov(ca_a, ca_b)])
            }
        };
        Ok(s)
    };
    map_binary(a, b, function, Some(Field::new(name, DataType::Float32))).alias(name)
}

/// Compute the pearson correlation between two columns.
pub fn pearson_corr(a: Expr, b: Expr) -> Expr {
    let name = "pearson_corr";
    let function = move |a: Series, b: Series| {
        let s = match a.dtype() {
            DataType::Float32 => {
                let ca_a = a.f32().unwrap();
                let ca_b = b.f32().unwrap();
                Series::new(name, &[polars_core::functions::pearson_corr(ca_a, ca_b)])
            }
            DataType::Float64 => {
                let ca_a = a.f64().unwrap();
                let ca_b = b.f64().unwrap();
                Series::new(name, &[polars_core::functions::pearson_corr(ca_a, ca_b)])
            }
            _ => {
                let a = a.cast(&DataType::Float64)?;
                let b = b.cast(&DataType::Float64)?;
                let ca_a = a.f64().unwrap();
                let ca_b = b.f64().unwrap();
                Series::new(name, &[polars_core::functions::pearson_corr(ca_a, ca_b)])
            }
        };
        Ok(s)
    };
    map_binary(a, b, function, Some(Field::new(name, DataType::Float32))).alias(name)
}

/// Compute the spearman rank correlation between two columns.
#[cfg(feature = "rank")]
#[cfg_attr(docsrs, doc(cfg(feature = "rank")))]
pub fn spearman_rank_corr(a: Expr, b: Expr) -> Expr {
    pearson_corr(a.rank(RankMethod::Min), b.rank(RankMethod::Min)).alias("spearman_rank_corr")
}

/// Find the indexes that would sort these series in order of appearance.
/// That means that the first `Series` will be used to determine the ordering
/// until duplicates are found. Once duplicates are found, the next `Series` will
/// be used and so on.
pub fn argsort_by<E: AsRef<[Expr]>>(by: E, reverse: &[bool]) -> Expr {
    let reverse = reverse.to_vec();
    let function = NoEq::new(Arc::new(move |by: &mut [Series]| {
        polars_core::functions::argsort_by(by, &reverse).map(|ca| ca.into_series())
    }) as Arc<dyn SeriesUdf>);

    Expr::Function {
        input: by.as_ref().to_vec(),
        function,
        output_type: GetOutput::from_type(DataType::UInt32),
        options: FunctionOptions {
            collect_groups: ApplyOptions::ApplyFlat,
            input_wildcard_expansion: false,
        },
    }
}

#[cfg(feature = "concat_str")]
#[cfg_attr(docsrs, doc(cfg(feature = "concat_str")))]
/// Concat string columns in linear time
pub fn concat_str(s: Vec<Expr>, sep: &str) -> Expr {
    let sep = sep.to_string();
    let function = NoEq::new(Arc::new(move |s: &mut [Series]| {
        polars_core::functions::concat_str(s, &sep).map(|ca| ca.into_series())
    }) as Arc<dyn SeriesUdf>);
    Expr::Function {
        input: s,
        function,
        output_type: GetOutput::from_type(DataType::Utf8),
        options: FunctionOptions {
            collect_groups: ApplyOptions::ApplyFlat,
            input_wildcard_expansion: true,
        },
    }
}

/// Concat lists entries.
#[cfg(feature = "list")]
#[cfg_attr(docsrs, doc(cfg(feature = "list")))]
pub fn concat_lst(s: Vec<Expr>) -> Expr {
    let function = NoEq::new(Arc::new(move |s: &mut [Series]| {
        let first = std::mem::take(&mut s[0]);
        let other = &s[1..];

        let first_ca = first.list()?;
        first_ca.lst_concat(other).map(|ca| ca.into_series())
    }) as Arc<dyn SeriesUdf>);
    Expr::Function {
        input: s,
        function,
        output_type: GetOutput::from_type(DataType::Utf8),
        options: FunctionOptions {
            collect_groups: ApplyOptions::ApplyFlat,
            input_wildcard_expansion: true,
        },
    }
}

/// Create list entries that are range arrays
/// - if `low` and `high` are a column, every element will expand into an array in a list column.
/// - if `low` and `high` are literals the output will be of `Int64`.
#[cfg(feature = "arange")]
#[cfg_attr(docsrs, doc(cfg(feature = "arange")))]
pub fn arange(low: Expr, high: Expr, step: usize) -> Expr {
    if matches!(low, Expr::Literal(_)) || matches!(high, Expr::Literal(_)) {
        let f = move |sa: Series, sb: Series| {
            let sa = sa.cast(&DataType::Int64)?;
            let sb = sb.cast(&DataType::Int64)?;
            let low = sa
                .i64()?
                .get(0)
                .ok_or_else(|| PolarsError::NoData("no data in `low` evaluation".into()))?;
            let high = sb
                .i64()?
                .get(0)
                .ok_or_else(|| PolarsError::NoData("no data in `high` evaluation".into()))?;

            if step > 1 {
                Ok(Int64Chunked::new_from_iter("arange", (low..high).step_by(step)).into_series())
            } else {
                Ok(Int64Chunked::new_from_iter("arange", low..high).into_series())
            }
        };
        map_binary(low, high, f, Some(Field::new("arange", DataType::Int64)))
    } else {
        let f = move |sa: Series, sb: Series| {
            let sa = sa.cast(&DataType::Int64)?;
            let sb = sb.cast(&DataType::Int64)?;
            let low = sa.i64()?;
            let high = sb.i64()?;
            let mut builder =
                ListPrimitiveChunkedBuilder::<Int64Type>::new("arange", low.len(), low.len() * 3);

            low.into_iter()
                .zip(high.into_iter())
                .for_each(|(opt_l, opt_h)| match (opt_l, opt_h) {
                    (Some(l), Some(r)) => {
                        if step > 1 {
                            builder.append_iter_values((l..r).step_by(step));
                        } else {
                            builder.append_iter_values(l..r);
                        }
                    }
                    _ => builder.append_null(),
                });

            Ok(builder.finish().into_series())
        };
        map_binary(
            low,
            high,
            f,
            Some(Field::new("arange", DataType::List(DataType::Int64.into()))),
        )
    }
}