1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
//! Lazy API of Polars
//!
//! *Credits to the work of Andy Grove and Ballista/ DataFusion / Apache Arrow, which served as
//! inspiration for the lazy API.*
//!
//! The lazy api of Polars supports a subset of the eager api. Apart from the distributed compute,
//! it is very similar to [Apache Spark](https://spark.apache.org/). You write queries in a
//! domain specific language. These queries translate to a logical plan, which represent your query steps.
//! Before execution this logical plan is optimized and may change the order of operations if this will increase performance.
//! Or implicit type casts may be added such that execution of the query won't lead to a type error (if it can be resolved).
//!
//! # Lazy DSL
//!
//! The lazy API of polars can be used as long we operation on one or multiple DataFrame(s) and
//! Series of the same length as the DataFrame. To get started we call the [lazy](crate::frame::IntoLazy::lazy)
//! method. This returns a [LazyFrame](crate::frame::LazyFrame) exposing the lazy API.
//!
//! Lazy operations don't execute until we call [collect](crate::frame::LazyFrame::collect).
//! This allows polars to optimize/reorder the query which may lead to faster queries or less type errors.
//!
//! The DSL is mostly defined by [LazyFrame](crate::frame::LazyFrame) for operations on DataFrames and
//! the [Expr](crate::dsl::Expr) and functions in the [dsl modules](crate::dsl) that operate
//! on expressions.
//!
//! ## Examples
//!
//! #### Adding a new column to a lazy DataFrame
//!
//!```rust
//! #[macro_use] extern crate polars_core;
//! use polars_core::prelude::*;
//! use polars_lazy::prelude::*;
//!
//! let df = df! {
//!     "column_a" => &[1, 2, 3, 4, 5],
//!     "column_b" => &["a", "b", "c", "d", "e"]
//! }.unwrap();
//!
//! let new = df.lazy()
//!     // Note the reverse here!!
//!     .reverse()
//!     .with_column(
//!         // always rename a new column
//!         (col("column_a") * lit(10)).alias("new_column")
//!     )
//!     .collect()
//!     .unwrap();
//!
//! assert!(new.column("new_column")
//!     .unwrap()
//!     .series_equal(
//!         &Series::new("valid", &[50, 40, 30, 20, 10])
//!     )
//! );
//! ```
//! #### Modifying a column based on some predicate
//!
//!```rust
//! #[macro_use] extern crate polars_core;
//! use polars_core::prelude::*;
//! use polars_lazy::prelude::*;
//!
//! let df = df! {
//!     "column_a" => &[1, 2, 3, 4, 5],
//!     "column_b" => &["a", "b", "c", "d", "e"]
//! }.unwrap();
//!
//! let new = df.lazy()
//!     .with_column(
//!         // value = 100 if x < 3 else x
//!         when(
//!             col("column_a").lt(lit(3))
//!         ).then(
//!             lit(100)
//!         ).otherwise(
//!             col("column_a")
//!         ).alias("new_column")
//!     )
//!     .collect()
//!     .unwrap();
//!
//! assert!(new.column("new_column")
//!     .unwrap()
//!     .series_equal(
//!         &Series::new("valid", &[100, 100, 3, 4, 5])
//!     )
//! );
//! ```
//! #### Groupby + Aggregations
//!
//!```rust
//! use polars_core::prelude::*;
//! use polars_core::df;
//! use polars_lazy::prelude::*;
//!
//! fn example() -> Result<DataFrame> {
//!     let df = df!(
//!     "date" => ["2020-08-21", "2020-08-21", "2020-08-22", "2020-08-23", "2020-08-22"],
//!     "temp" => [20, 10, 7, 9, 1],
//!     "rain" => [0.2, 0.1, 0.3, 0.1, 0.01]
//!     )?;
//!
//!     df.lazy()
//!     .groupby([col("date")])
//!     .agg([
//!         col("rain").min(),
//!         col("rain").sum(),
//!         col("rain").quantile(0.5).alias("median_rain"),
//!     ])
//!     .sort("date", false)
//!     .collect()
//!
//! }
//! ```
//!
//! #### Calling any function
//!
//! Below we lazily call a custom closure of type `Series => Result<Series>`. Because the closure
//! changes the type/variant of the Series we also define the return type. This is important because
//! due to the laziness the types should be known beforehand. Note that by applying these custom
//! functions you have access the the whole **eager API** of the Series/ChunkedArrays.
//!
//!```rust
//! #[macro_use] extern crate polars_core;
//! use polars_core::prelude::*;
//! use polars_lazy::prelude::*;
//!
//! let df = df! {
//!     "column_a" => &[1, 2, 3, 4, 5],
//!     "column_b" => &["a", "b", "c", "d", "e"]
//! }.unwrap();
//!
//! let new = df.lazy()
//!     .with_column(
//!         col("column_a")
//!         // apply a custom closure Series => Result<Series>
//!         .map(|_s| {
//!             Ok(Series::new("", &[6.0f32, 6.0, 6.0, 6.0, 6.0]))
//!         },
//!         // return type of the closure
//!         GetOutput::from_type(DataType::Float64)).alias("new_column")
//!     )
//!     .collect()
//!     .unwrap();
//! ```
//!
//! #### Joins, filters and projections
//!
//! In the query below we do a lazy join and afterwards we filter rows based on the predicate `a < 2`.
//! And last we select the columns `"b"` and `"c_first"`. In an eager API this query would be very
//! suboptimal because we join on DataFrames with more columns and rows than needed. In this case
//! the query optimizer will do the selection of the columns (projection) and the filtering of the
//! rows (selection) before the join, thereby reducing the amount of work done by the query.
//!
//! ```rust
//! # use polars_core::prelude::*;
//! # use polars_lazy::prelude::*;
//!
//! fn example(df_a: DataFrame, df_b: DataFrame) -> LazyFrame {
//!     df_a.lazy()
//!     .left_join(df_b.lazy(), col("b_left"), col("b_right"))
//!     .filter(
//!         col("a").lt(lit(2))
//!     )
//!     .groupby([col("b")])
//!     .agg(
//!         vec![col("b").first(), col("c").first()]
//!      )
//!     .select(&[col("b"), col("c_first")])
//! }
//! ```
//!
//! If we want to do an aggregation on all columns we can use the wildcard operator `*` to achieve this.
//!
//! ```rust
//! # use polars_core::prelude::*;
//! # use polars_lazy::prelude::*;
//!
//! fn aggregate_all_columns(df_a: DataFrame) -> LazyFrame {
//!     df_a.lazy()
//!     .groupby([col("b")])
//!     .agg(
//!         vec![col("*").first()]
//!      )
//! }
//! ```
#![cfg_attr(docsrs, feature(doc_cfg))]
#[cfg(all(feature = "datafusion", feature = "compile"))]
mod datafusion;
#[cfg(feature = "compile")]
pub mod dsl;
#[cfg(feature = "compile")]
mod dummies;
#[cfg(feature = "compile")]
pub mod frame;
#[cfg(feature = "compile")]
pub mod functions;
#[cfg(feature = "compile")]
pub mod logical_plan;
#[cfg(feature = "compile")]
pub mod physical_plan;
#[cfg(feature = "compile")]
pub mod prelude;
#[cfg(feature = "compile")]
pub(crate) mod utils;

#[cfg(test)]
mod test;

#[cfg(test)]
mod tests {
    use polars_core::prelude::*;
    use polars_io::prelude::*;
    use std::io::Cursor;

    // physical plan see: datafusion/physical_plan/planner.rs.html#61-63

    pub(crate) fn get_df() -> DataFrame {
        let s = r#"
"sepal.length","sepal.width","petal.length","petal.width","variety"
5.1,3.5,1.4,.2,"Setosa"
4.9,3,1.4,.2,"Setosa"
4.7,3.2,1.3,.2,"Setosa"
4.6,3.1,1.5,.2,"Setosa"
5,3.6,1.4,.2,"Setosa"
5.4,3.9,1.7,.4,"Setosa"
4.6,3.4,1.4,.3,"Setosa"
"#;

        let file = Cursor::new(s);

        let df = CsvReader::new(file)
            // we also check if infer schema ignores errors
            .infer_schema(Some(3))
            .has_header(true)
            .finish()
            .unwrap();
        df
    }
}