1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
//! Lazy API of Polars
//!
//! *Credits to the work of Andy Grove and Ballista/ DataFusion / Apache Arrow, which served as
//! inspiration for the lazy API.*
//!
//! The lazy api of Polars supports a subset of the eager api. Apart from the distributed compute,
//! it is very similar to [Apache Spark](https://spark.apache.org/). You write queries in a
//! domain specific language. These queries translate to a logical plan, which represent your query steps.
//! Before execution this logical plan is optimized and may change the order of operations if this will increase performance.
//! Or implicit type casts may be added such that execution of the query won't lead to a type error (if it can be resolved).
//!
//! # Lazy DSL
//!
//! The lazy API of polars can be used as long we operation on one or multiple DataFrame(s) and
//! Series of the same length as the DataFrame. To get started we call the [lazy](crate::frame::IntoLazy::lazy)
//! method. This returns a [LazyFrame](crate::frame::LazyFrame) exposing the lazy API.
//!
//! Lazy operations don't execute until we call [collect](crate::frame::LazyFrame::collect).
//! This allows polars to optimize/reorder the query which may lead to faster queries or less type errors.
//!
//! The DSL is mostly defined by [LazyFrame](crate::frame::LazyFrame) for operations on DataFrames and
//! the [Expr](crate::dsl::Expr) and functions in the [dsl modules](crate::dsl) that operate
//! on expressions.
//!
//! ## Examples
//!
//! #### Adding a new column to a lazy DataFrame
//!
//!```rust
//! #[macro_use] extern crate polars_core;
//! use polars_core::prelude::*;
//! use polars_lazy::prelude::*;
//!
//! let df = df! {
//! "column_a" => &[1, 2, 3, 4, 5],
//! "column_b" => &["a", "b", "c", "d", "e"]
//! }.unwrap();
//!
//! let new = df.lazy()
//! // Note the reverse here!!
//! .reverse()
//! .with_column(
//! // always rename a new column
//! (col("column_a") * lit(10)).alias("new_column")
//! )
//! .collect()
//! .unwrap();
//!
//! assert!(new.column("new_column")
//! .unwrap()
//! .series_equal(
//! &Series::new("valid", &[50, 40, 30, 20, 10])
//! )
//! );
//! ```
//! #### Modifying a column based on some predicate
//!
//!```rust
//! #[macro_use] extern crate polars_core;
//! use polars_core::prelude::*;
//! use polars_lazy::prelude::*;
//!
//! let df = df! {
//! "column_a" => &[1, 2, 3, 4, 5],
//! "column_b" => &["a", "b", "c", "d", "e"]
//! }.unwrap();
//!
//! let new = df.lazy()
//! .with_column(
//! // value = 100 if x < 3 else x
//! when(
//! col("column_a").lt(lit(3))
//! ).then(
//! lit(100)
//! ).otherwise(
//! col("column_a")
//! ).alias("new_column")
//! )
//! .collect()
//! .unwrap();
//!
//! assert!(new.column("new_column")
//! .unwrap()
//! .series_equal(
//! &Series::new("valid", &[100, 100, 3, 4, 5])
//! )
//! );
//! ```
//! #### Groupby + Aggregations
//!
//!```rust
//! use polars_core::prelude::*;
//! use polars_core::df;
//! use polars_lazy::prelude::*;
//!
//! fn example() -> Result<DataFrame> {
//! let df = df!(
//! "date" => ["2020-08-21", "2020-08-21", "2020-08-22", "2020-08-23", "2020-08-22"],
//! "temp" => [20, 10, 7, 9, 1],
//! "rain" => [0.2, 0.1, 0.3, 0.1, 0.01]
//! )?;
//!
//! df.lazy()
//! .groupby([col("date")])
//! .agg([
//! col("rain").min(),
//! col("rain").sum(),
//! col("rain").quantile(0.5).alias("median_rain"),
//! ])
//! .sort("date", false)
//! .collect()
//!
//! }
//! ```
//!
//! #### Calling any function
//!
//! Below we lazily call a custom closure of type `Series => Result<Series>`. Because the closure
//! changes the type/variant of the Series we also define the return type. This is important because
//! due to the laziness the types should be known beforehand. Note that by applying these custom
//! functions you have access the the whole **eager API** of the Series/ChunkedArrays.
//!
//!```rust
//! #[macro_use] extern crate polars_core;
//! use polars_core::prelude::*;
//! use polars_lazy::prelude::*;
//!
//! let df = df! {
//! "column_a" => &[1, 2, 3, 4, 5],
//! "column_b" => &["a", "b", "c", "d", "e"]
//! }.unwrap();
//!
//! let new = df.lazy()
//! .with_column(
//! col("column_a")
//! // apply a custom closure Series => Result<Series>
//! .map(|_s| {
//! Ok(Series::new("", &[6.0f32, 6.0, 6.0, 6.0, 6.0]))
//! },
//! // return type of the closure
//! GetOutput::from_type(DataType::Float64)).alias("new_column")
//! )
//! .collect()
//! .unwrap();
//! ```
//!
//! #### Joins, filters and projections
//!
//! In the query below we do a lazy join and afterwards we filter rows based on the predicate `a < 2`.
//! And last we select the columns `"b"` and `"c_first"`. In an eager API this query would be very
//! suboptimal because we join on DataFrames with more columns and rows than needed. In this case
//! the query optimizer will do the selection of the columns (projection) and the filtering of the
//! rows (selection) before the join, thereby reducing the amount of work done by the query.
//!
//! ```rust
//! # use polars_core::prelude::*;
//! # use polars_lazy::prelude::*;
//!
//! fn example(df_a: DataFrame, df_b: DataFrame) -> LazyFrame {
//! df_a.lazy()
//! .left_join(df_b.lazy(), col("b_left"), col("b_right"))
//! .filter(
//! col("a").lt(lit(2))
//! )
//! .groupby([col("b")])
//! .agg(
//! vec![col("b").first(), col("c").first()]
//! )
//! .select(&[col("b"), col("c_first")])
//! }
//! ```
//!
//! If we want to do an aggregation on all columns we can use the wildcard operator `*` to achieve this.
//!
//! ```rust
//! # use polars_core::prelude::*;
//! # use polars_lazy::prelude::*;
//!
//! fn aggregate_all_columns(df_a: DataFrame) -> LazyFrame {
//! df_a.lazy()
//! .groupby([col("b")])
//! .agg(
//! vec![col("*").first()]
//! )
//! }
//! ```
#![cfg_attr(docsrs, feature(doc_cfg))]
#[cfg(all(feature = "datafusion", feature = "compile"))]
mod datafusion;
#[cfg(feature = "compile")]
pub mod dsl;
#[cfg(feature = "compile")]
mod dummies;
#[cfg(feature = "compile")]
pub mod frame;
#[cfg(feature = "compile")]
pub mod functions;
#[cfg(feature = "compile")]
pub mod logical_plan;
#[cfg(feature = "compile")]
pub mod physical_plan;
#[cfg(feature = "compile")]
pub mod prelude;
#[cfg(feature = "compile")]
pub(crate) mod utils;
#[cfg(test)]
mod test;
#[cfg(test)]
mod tests {
use polars_core::prelude::*;
use polars_io::prelude::*;
use std::io::Cursor;
// physical plan see: datafusion/physical_plan/planner.rs.html#61-63
pub(crate) fn get_df() -> DataFrame {
let s = r#"
"sepal.length","sepal.width","petal.length","petal.width","variety"
5.1,3.5,1.4,.2,"Setosa"
4.9,3,1.4,.2,"Setosa"
4.7,3.2,1.3,.2,"Setosa"
4.6,3.1,1.5,.2,"Setosa"
5,3.6,1.4,.2,"Setosa"
5.4,3.9,1.7,.4,"Setosa"
4.6,3.4,1.4,.3,"Setosa"
"#;
let file = Cursor::new(s);
let df = CsvReader::new(file)
// we also check if infer schema ignores errors
.infer_schema(Some(3))
.has_header(true)
.finish()
.unwrap();
df
}
}