1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
use super::*;
/// Utility struct for the `when-then-otherwise` expression.
///
/// Represents the state of the expression after [when] is called.
///
/// In this state, `then` must be called to continue to finish the expression.
#[derive(Clone)]
pub struct When {
condition: Expr,
}
/// Utility struct for the `when-then-otherwise` expression.
///
/// Represents the state of the expression after `when(...).then(...)` is called.
#[derive(Clone)]
pub struct Then {
condition: Expr,
statement: Expr,
}
/// Utility struct for the `when-then-otherwise` expression.
///
/// Represents the state of the expression after an additional `when` is called.
///
/// In this state, `then` must be called to continue to finish the expression.
#[derive(Clone)]
pub struct ChainedWhen {
conditions: Vec<Expr>,
statements: Vec<Expr>,
}
/// Utility struct for the `when-then-otherwise` expression.
///
/// Represents the state of the expression after an additional `then` is called.
#[derive(Clone)]
pub struct ChainedThen {
conditions: Vec<Expr>,
statements: Vec<Expr>,
}
impl When {
/// Add a condition to the `when-then-otherwise` expression.
pub fn then<E: Into<Expr>>(self, expr: E) -> Then {
Then {
condition: self.condition,
statement: expr.into(),
}
}
}
impl Then {
/// Attach a statement to the corresponding condition.
pub fn when<E: Into<Expr>>(self, condition: E) -> ChainedWhen {
ChainedWhen {
conditions: vec![self.condition, condition.into()],
statements: vec![self.statement],
}
}
/// Define a default for the `when-then-otherwise` expression.
pub fn otherwise<E: Into<Expr>>(self, statement: E) -> Expr {
ternary_expr(self.condition, self.statement, statement.into())
}
}
impl ChainedWhen {
pub fn then<E: Into<Expr>>(mut self, statement: E) -> ChainedThen {
self.statements.push(statement.into());
ChainedThen {
conditions: self.conditions,
statements: self.statements,
}
}
}
impl ChainedThen {
/// Add another condition to the `when-then-otherwise` expression.
pub fn when<E: Into<Expr>>(mut self, condition: E) -> ChainedWhen {
self.conditions.push(condition.into());
ChainedWhen {
conditions: self.conditions,
statements: self.statements,
}
}
/// Define a default for the `when-then-otherwise` expression.
pub fn otherwise<E: Into<Expr>>(self, expr: E) -> Expr {
// we iterate the preds/ exprs last in first out
// and nest them.
//
// // this expr:
// when((col('x') == 'a')).then(1)
// .when(col('x') == 'b').then(2)
// .when(col('x') == 'c').then(3)
// .otherwise(4)
//
// needs to become:
// when((col('x') == 'a')).then(1) -
// .otherwise( |
// when(col('x') == 'b').then(2) - |
// .otherwise( | |
// pl.when(col('x') == 'c').then(3) | |
// .otherwise(4) | inner | outer
// ) | |
// ) _| _|
//
// by iterating LIFO we first create
// `inner` and then assign that to `otherwise`,
// which will be used in the next layer `outer`
//
let conditions_iter = self.conditions.into_iter().rev();
let mut statements_iter = self.statements.into_iter().rev();
let mut otherwise = expr.into();
for e in conditions_iter {
otherwise = ternary_expr(
e,
statements_iter
.next()
.expect("expr expected, did you call when().then().otherwise?"),
otherwise,
);
}
otherwise
}
}
/// Start a `when-then-otherwise` expression.
pub fn when<E: Into<Expr>>(condition: E) -> When {
When {
condition: condition.into(),
}
}
pub fn ternary_expr(predicate: Expr, truthy: Expr, falsy: Expr) -> Expr {
Expr::Ternary {
predicate: Arc::new(predicate),
truthy: Arc::new(truthy),
falsy: Arc::new(falsy),
}
}
/// Compute `op(l, r)` (or equivalently `l op r`). `l` and `r` must have types compatible with the Operator.
pub fn binary_expr(l: Expr, op: Operator, r: Expr) -> Expr {
Expr::BinaryExpr {
left: Arc::new(l),
op,
right: Arc::new(r),
}
}