1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
mod functions;
mod generic;
mod group_by;
mod hconcat;
mod hstack;
mod joins;
mod projection;
mod rename;
#[cfg(feature = "semi_anti_join")]
mod semi_anti_join;
use polars_core::datatypes::PlHashSet;
use polars_core::prelude::*;
use polars_io::RowIndex;
use recursive::recursive;
#[cfg(feature = "semi_anti_join")]
use semi_anti_join::process_semi_anti_join;
use crate::prelude::optimizer::projection_pushdown::generic::process_generic;
use crate::prelude::optimizer::projection_pushdown::group_by::process_group_by;
use crate::prelude::optimizer::projection_pushdown::hconcat::process_hconcat;
use crate::prelude::optimizer::projection_pushdown::hstack::process_hstack;
use crate::prelude::optimizer::projection_pushdown::joins::process_join;
use crate::prelude::optimizer::projection_pushdown::projection::process_projection;
use crate::prelude::optimizer::projection_pushdown::rename::process_rename;
use crate::prelude::*;
use crate::utils::aexpr_to_leaf_names;
fn init_vec() -> Vec<ColumnNode> {
Vec::with_capacity(16)
}
fn init_set() -> PlHashSet<Arc<str>> {
PlHashSet::with_capacity(32)
}
/// utility function to get names of the columns needed in projection at scan level
fn get_scan_columns(
acc_projections: &Vec<ColumnNode>,
expr_arena: &Arena<AExpr>,
row_index: Option<&RowIndex>,
) -> Option<Arc<[String]>> {
let mut with_columns = None;
if !acc_projections.is_empty() {
let mut columns = Vec::with_capacity(acc_projections.len());
for expr in acc_projections {
let name = column_node_to_name(*expr, expr_arena);
// we shouldn't project the row-count column, as that is generated
// in the scan
let push = match row_index {
Some(rc) if name != rc.name => true,
None => true,
_ => false,
};
if push {
columns.push((*name).to_owned())
}
}
with_columns = Some(Arc::from(columns));
}
with_columns
}
/// split in a projection vec that can be pushed down and a projection vec that should be used
/// in this node
///
/// # Returns
/// accumulated_projections, local_projections, accumulated_names
///
/// - `expands_schema`. An unnest adds more columns to a schema, so we cannot use fast path
fn split_acc_projections(
acc_projections: Vec<ColumnNode>,
down_schema: &Schema,
expr_arena: &Arena<AExpr>,
expands_schema: bool,
) -> (Vec<ColumnNode>, Vec<ColumnNode>, PlHashSet<Arc<str>>) {
// If node above has as many columns as the projection there is nothing to pushdown.
if !expands_schema && down_schema.len() == acc_projections.len() {
let local_projections = acc_projections;
(vec![], local_projections, PlHashSet::new())
} else {
let (acc_projections, local_projections): (Vec<_>, Vec<_>) = acc_projections
.into_iter()
.partition(|expr| check_input_column_node(*expr, down_schema, expr_arena));
let mut names = init_set();
for proj in &acc_projections {
let name = column_node_to_name(*proj, expr_arena);
names.insert(name);
}
(acc_projections, local_projections, names)
}
}
/// utility function such that we can recurse all binary expressions in the expression tree
fn add_expr_to_accumulated(
expr: Node,
acc_projections: &mut Vec<ColumnNode>,
projected_names: &mut PlHashSet<Arc<str>>,
expr_arena: &Arena<AExpr>,
) {
for root_node in aexpr_to_column_nodes_iter(expr, expr_arena) {
let name = column_node_to_name(root_node, expr_arena);
if projected_names.insert(name) {
acc_projections.push(root_node)
}
}
}
fn add_str_to_accumulated(
name: &str,
acc_projections: &mut Vec<ColumnNode>,
projected_names: &mut PlHashSet<Arc<str>>,
expr_arena: &mut Arena<AExpr>,
) {
// if empty: all columns are already projected.
if !acc_projections.is_empty() && !projected_names.contains(name) {
let node = expr_arena.add(AExpr::Column(ColumnName::from(name)));
add_expr_to_accumulated(node, acc_projections, projected_names, expr_arena);
}
}
fn update_scan_schema(
acc_projections: &[ColumnNode],
expr_arena: &Arena<AExpr>,
schema: &Schema,
sort_projections: bool,
) -> PolarsResult<Schema> {
let mut new_schema = Schema::with_capacity(acc_projections.len());
let mut new_cols = Vec::with_capacity(acc_projections.len());
for node in acc_projections.iter() {
let name = column_node_to_name(*node, expr_arena);
let item = schema.try_get_full(&name)?;
new_cols.push(item);
}
// make sure that the projections are sorted by the schema.
if sort_projections {
new_cols.sort_unstable_by_key(|item| item.0);
}
for item in new_cols {
new_schema.with_column(item.1.clone(), item.2.clone());
}
Ok(new_schema)
}
pub struct ProjectionPushDown {
pub is_count_star: bool,
}
impl ProjectionPushDown {
pub(super) fn new() -> Self {
Self {
is_count_star: false,
}
}
/// Projection will be done at this node, but we continue optimization
fn no_pushdown_restart_opt(
&mut self,
lp: IR,
acc_projections: Vec<ColumnNode>,
projections_seen: usize,
lp_arena: &mut Arena<IR>,
expr_arena: &mut Arena<AExpr>,
) -> PolarsResult<IR> {
let inputs = lp.get_inputs();
let exprs = lp.get_exprs();
let new_inputs = inputs
.iter()
.map(|&node| {
let alp = lp_arena.take(node);
let alp = self.push_down(
alp,
Default::default(),
Default::default(),
projections_seen,
lp_arena,
expr_arena,
)?;
lp_arena.replace(node, alp);
Ok(node)
})
.collect::<PolarsResult<Vec<_>>>()?;
let lp = lp.with_exprs_and_input(exprs, new_inputs);
let builder = IRBuilder::from_lp(lp, expr_arena, lp_arena);
Ok(self.finish_node_simple_projection(&acc_projections, builder))
}
fn finish_node_simple_projection(
&mut self,
local_projections: &[ColumnNode],
builder: IRBuilder,
) -> IR {
if !local_projections.is_empty() {
builder
.project_simple_nodes(local_projections.iter().map(|node| node.0))
.unwrap()
.build()
} else {
builder.build()
}
}
fn finish_node(&mut self, local_projections: Vec<ExprIR>, builder: IRBuilder) -> IR {
if !local_projections.is_empty() {
builder
.project(local_projections, Default::default())
.build()
} else {
builder.build()
}
}
#[allow(clippy::too_many_arguments)]
fn join_push_down(
&mut self,
schema_left: &Schema,
schema_right: &Schema,
proj: ColumnNode,
pushdown_left: &mut Vec<ColumnNode>,
pushdown_right: &mut Vec<ColumnNode>,
names_left: &mut PlHashSet<Arc<str>>,
names_right: &mut PlHashSet<Arc<str>>,
expr_arena: &Arena<AExpr>,
) -> (bool, bool) {
let mut pushed_at_least_one = false;
let mut already_projected = false;
let name = column_node_to_name(proj, expr_arena);
let is_in_left = names_left.contains(&name);
let is_in_right = names_right.contains(&name);
already_projected |= is_in_left;
already_projected |= is_in_right;
if check_input_column_node(proj, schema_left, expr_arena) && !is_in_left {
names_left.insert(name.clone());
pushdown_left.push(proj);
pushed_at_least_one = true;
}
if check_input_column_node(proj, schema_right, expr_arena) && !is_in_right {
names_right.insert(name.clone());
pushdown_right.push(proj);
pushed_at_least_one = true;
}
(pushed_at_least_one, already_projected)
}
/// This pushes down current node and assigns the result to this node.
fn pushdown_and_assign(
&mut self,
input: Node,
acc_projections: Vec<ColumnNode>,
names: PlHashSet<Arc<str>>,
projections_seen: usize,
lp_arena: &mut Arena<IR>,
expr_arena: &mut Arena<AExpr>,
) -> PolarsResult<()> {
let alp = lp_arena.take(input);
let lp = self.push_down(
alp,
acc_projections,
names,
projections_seen,
lp_arena,
expr_arena,
)?;
lp_arena.replace(input, lp);
Ok(())
}
/// This pushes down the projection that are validated
/// that they can be done successful at the schema above
/// The result is assigned to this node.
///
/// The local projections are return and still have to be applied
fn pushdown_and_assign_check_schema(
&mut self,
input: Node,
acc_projections: Vec<ColumnNode>,
projections_seen: usize,
lp_arena: &mut Arena<IR>,
expr_arena: &mut Arena<AExpr>,
// an unnest changes/expands the schema
expands_schema: bool,
) -> PolarsResult<Vec<ColumnNode>> {
let alp = lp_arena.take(input);
let down_schema = alp.schema(lp_arena);
let (acc_projections, local_projections, names) =
split_acc_projections(acc_projections, &down_schema, expr_arena, expands_schema);
let lp = self.push_down(
alp,
acc_projections,
names,
projections_seen,
lp_arena,
expr_arena,
)?;
lp_arena.replace(input, lp);
Ok(local_projections)
}
/// Projection pushdown optimizer
///
/// # Arguments
///
/// * `IR` - Arena based logical plan tree representing the query.
/// * `acc_projections` - The projections we accumulate during tree traversal.
/// * `names` - We keep track of the names to ensure we don't do duplicate projections.
/// * `projections_seen` - Count the number of projection operations during tree traversal.
/// * `lp_arena` - The local memory arena for the logical plan.
/// * `expr_arena` - The local memory arena for the expressions.
#[recursive]
fn push_down(
&mut self,
logical_plan: IR,
mut acc_projections: Vec<ColumnNode>,
mut projected_names: PlHashSet<Arc<str>>,
projections_seen: usize,
lp_arena: &mut Arena<IR>,
expr_arena: &mut Arena<AExpr>,
) -> PolarsResult<IR> {
use IR::*;
match logical_plan {
// Should not yet be here
Reduce { .. } => unreachable!(),
Select { expr, input, .. } => process_projection(
self,
input,
expr,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
),
SimpleProjection { columns, input, .. } => {
let exprs = names_to_expr_irs(columns.iter_names(), expr_arena);
process_projection(
self,
input,
exprs,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
)
},
DataFrameScan {
df,
schema,
mut output_schema,
filter: selection,
..
} => {
if !acc_projections.is_empty() {
output_schema = Some(Arc::new(update_scan_schema(
&acc_projections,
expr_arena,
&schema,
false,
)?));
}
let lp = DataFrameScan {
df,
schema,
output_schema,
filter: selection,
};
Ok(lp)
},
#[cfg(feature = "python")]
PythonScan {
mut options,
predicate,
} => {
options.with_columns = get_scan_columns(&acc_projections, expr_arena, None);
options.output_schema = if options.with_columns.is_none() {
None
} else {
Some(Arc::new(update_scan_schema(
&acc_projections,
expr_arena,
&options.schema,
true,
)?))
};
Ok(PythonScan { options, predicate })
},
Scan {
paths,
file_info,
mut hive_parts,
scan_type,
predicate,
mut file_options,
mut output_schema,
} => {
let do_optimization = match scan_type {
FileScan::Anonymous { ref function, .. } => {
function.allows_projection_pushdown()
},
#[cfg(feature = "json")]
FileScan::NDJson { .. } => true,
#[cfg(feature = "ipc")]
FileScan::Ipc { .. } => true,
#[cfg(feature = "csv")]
FileScan::Csv { .. } => true,
#[cfg(feature = "parquet")]
FileScan::Parquet { .. } => true,
};
if do_optimization {
file_options.with_columns = get_scan_columns(
&acc_projections,
expr_arena,
file_options.row_index.as_ref(),
);
output_schema = if let Some(ref with_columns) = file_options.with_columns {
let mut schema = update_scan_schema(
&acc_projections,
expr_arena,
&file_info.schema,
scan_type.sort_projection(&file_options),
)?;
hive_parts = if let Some(hive_parts) = hive_parts {
let (new_schema, projected_indices) = hive_parts[0]
.get_projection_schema_and_indices(
&with_columns.iter().cloned().collect::<PlHashSet<_>>(),
);
Some(
hive_parts
.iter()
.cloned()
.map(|mut hp| {
hp.apply_projection(
new_schema.clone(),
projected_indices.as_ref(),
);
hp
})
.collect::<Arc<[_]>>(),
)
} else {
None
};
// Hive partitions are created AFTER the projection, so the output
// schema is incorrect. Here we ensure the columns that are projected and hive
// parts are added at the proper place in the schema, which is at the end.
if let Some(ref hive_parts) = hive_parts {
let partition_schema = hive_parts.first().unwrap().schema();
file_options.with_columns = file_options.with_columns.map(|x| {
x.iter()
.filter(|x| !partition_schema.contains(x))
.cloned()
.collect::<Arc<[_]>>()
});
for (name, _) in partition_schema.iter() {
if let Some(dt) = schema.shift_remove(name) {
schema.with_column(name.clone(), dt);
}
}
}
Some(Arc::new(schema))
} else {
file_options.with_columns = maybe_init_projection_excluding_hive(
file_info.reader_schema.as_ref().unwrap(),
hive_parts.as_ref().map(|x| &x[0]),
);
None
};
}
let lp = Scan {
paths,
file_info,
hive_parts,
output_schema,
scan_type,
predicate,
file_options,
};
if !do_optimization {
let builder = IRBuilder::from_lp(lp, expr_arena, lp_arena);
let builder = builder.project_simple_nodes(acc_projections)?;
Ok(builder.build())
} else {
Ok(lp)
}
},
Sort {
input,
by_column,
slice,
sort_options,
} => {
if !acc_projections.is_empty() {
// Make sure that the column(s) used for the sort is projected
by_column.iter().for_each(|node| {
add_expr_to_accumulated(
node.node(),
&mut acc_projections,
&mut projected_names,
expr_arena,
);
});
}
self.pushdown_and_assign(
input,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
)?;
Ok(Sort {
input,
by_column,
slice,
sort_options,
})
},
Distinct { input, options } => {
// make sure that the set of unique columns is projected
if !acc_projections.is_empty() {
if let Some(subset) = options.subset.as_ref() {
subset.iter().for_each(|name| {
add_str_to_accumulated(
name,
&mut acc_projections,
&mut projected_names,
expr_arena,
)
})
} else {
// distinct needs all columns
let input_schema = lp_arena.get(input).schema(lp_arena);
for name in input_schema.iter_names() {
add_str_to_accumulated(
name.as_str(),
&mut acc_projections,
&mut projected_names,
expr_arena,
)
}
}
}
self.pushdown_and_assign(
input,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
)?;
Ok(Distinct { input, options })
},
Filter { predicate, input } => {
if !acc_projections.is_empty() {
// make sure that the filter column is projected
add_expr_to_accumulated(
predicate.node(),
&mut acc_projections,
&mut projected_names,
expr_arena,
);
};
self.pushdown_and_assign(
input,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
)?;
Ok(Filter { predicate, input })
},
GroupBy {
input,
keys,
aggs,
apply,
schema,
maintain_order,
options,
} => process_group_by(
self,
input,
keys,
aggs,
apply,
schema,
maintain_order,
options,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
),
Join {
input_left,
input_right,
left_on,
right_on,
options,
schema,
} => match options.args.how {
#[cfg(feature = "semi_anti_join")]
JoinType::Semi | JoinType::Anti => process_semi_anti_join(
self,
input_left,
input_right,
left_on,
right_on,
options,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
),
_ => process_join(
self,
input_left,
input_right,
left_on,
right_on,
options,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
&schema,
),
},
HStack {
input,
exprs,
options,
..
} => process_hstack(
self,
input,
exprs,
options,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
),
ExtContext {
input, contexts, ..
} => {
// local projections are ignored. These are just root nodes
// complex expression will still be done later
let _local_projections = self.pushdown_and_assign_check_schema(
input,
acc_projections,
projections_seen,
lp_arena,
expr_arena,
false,
)?;
let mut new_schema = lp_arena
.get(input)
.schema(lp_arena)
.as_ref()
.as_ref()
.clone();
for node in &contexts {
let other_schema = lp_arena.get(*node).schema(lp_arena);
for fld in other_schema.iter_fields() {
if new_schema.get(fld.name()).is_none() {
new_schema.with_column(fld.name, fld.dtype);
}
}
}
Ok(ExtContext {
input,
contexts,
schema: Arc::new(new_schema),
})
},
MapFunction { input, function } => functions::process_functions(
self,
input,
function,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
),
HConcat {
inputs,
schema,
options,
} => process_hconcat(
self,
inputs,
schema,
options,
acc_projections,
projections_seen,
lp_arena,
expr_arena,
),
lp @ Union { .. } => process_generic(
self,
lp,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
),
// These nodes only have inputs and exprs, so we can use same logic.
lp @ Slice { .. } | lp @ Sink { .. } => process_generic(
self,
lp,
acc_projections,
projected_names,
projections_seen,
lp_arena,
expr_arena,
),
Cache { .. } => {
// projections above this cache will be accumulated and pushed down
// later
// the redundant projection will be cleaned in the fast projection optimization
// phase.
if acc_projections.is_empty() {
Ok(logical_plan)
} else {
Ok(IRBuilder::from_lp(logical_plan, expr_arena, lp_arena)
.project_simple_nodes(acc_projections)
.unwrap()
.build())
}
},
Invalid => unreachable!(),
}
}
pub fn optimize(
&mut self,
logical_plan: IR,
lp_arena: &mut Arena<IR>,
expr_arena: &mut Arena<AExpr>,
) -> PolarsResult<IR> {
let acc_projections = init_vec();
let names = init_set();
self.push_down(
logical_plan,
acc_projections,
names,
0,
lp_arena,
expr_arena,
)
}
}