1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
use std::ops::Deref;
use std::sync::Mutex;

use arrow::datatypes::ArrowSchemaRef;
use either::Either;
use polars_core::prelude::*;
use polars_utils::format_smartstring;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::prelude::*;

impl DslPlan {
    // Warning! This should not be used on the DSL internally.
    // All schema resolving should be done during conversion to [`IR`].

    /// Compute the schema. This requires conversion to [`IR`] and type-resolving.
    pub fn compute_schema(&self) -> PolarsResult<SchemaRef> {
        let mut lp_arena = Default::default();
        let mut expr_arena = Default::default();
        let node = to_alp(self.clone(), &mut expr_arena, &mut lp_arena, false, true)?;

        Ok(lp_arena.get(node).schema(&lp_arena).into_owned())
    }
}

#[derive(Clone, Debug, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct FileInfo {
    pub schema: SchemaRef,
    /// Stores the schema used for the reader, as the main schema can contain
    /// extra hive columns.
    pub reader_schema: Option<Either<ArrowSchemaRef, SchemaRef>>,
    /// - known size
    /// - estimated size (set to unsize::max if unknown).
    pub row_estimation: (Option<usize>, usize),
}

impl FileInfo {
    /// Constructs a new [`FileInfo`].
    pub fn new(
        schema: SchemaRef,
        reader_schema: Option<Either<ArrowSchemaRef, SchemaRef>>,
        row_estimation: (Option<usize>, usize),
    ) -> Self {
        Self {
            schema: schema.clone(),
            reader_schema,
            row_estimation,
        }
    }

    /// Merge the [`Schema`] of a [`HivePartitions`] with the schema of this [`FileInfo`].
    pub fn update_schema_with_hive_schema(&mut self, hive_schema: SchemaRef) {
        let schema = Arc::make_mut(&mut self.schema);

        for field in hive_schema.iter_fields() {
            if let Ok(existing) = schema.try_get_mut(&field.name) {
                *existing = field.data_type().clone();
            } else {
                schema
                    .insert_at_index(schema.len(), field.name, field.dtype.clone())
                    .unwrap();
            }
        }
    }
}

#[cfg(feature = "streaming")]
fn estimate_sizes(
    known_size: Option<usize>,
    estimated_size: usize,
    filter_count: usize,
) -> (Option<usize>, usize) {
    match (known_size, filter_count) {
        (Some(known_size), 0) => (Some(known_size), estimated_size),
        (None, 0) => (None, estimated_size),
        (_, _) => (
            None,
            (estimated_size as f32 * 0.9f32.powf(filter_count as f32)) as usize,
        ),
    }
}

#[cfg(feature = "streaming")]
pub fn set_estimated_row_counts(
    root: Node,
    lp_arena: &mut Arena<IR>,
    expr_arena: &Arena<AExpr>,
    mut _filter_count: usize,
    scratch: &mut Vec<Node>,
) -> (Option<usize>, usize, usize) {
    use IR::*;

    fn apply_slice(out: &mut (Option<usize>, usize, usize), slice: Option<(i64, usize)>) {
        if let Some((_, len)) = slice {
            out.0 = out.0.map(|known_size| std::cmp::min(len, known_size));
            out.1 = std::cmp::min(len, out.1);
        }
    }

    match lp_arena.get(root) {
        Filter { predicate, input } => {
            _filter_count += expr_arena
                .iter(predicate.node())
                .filter(|(_, ae)| matches!(ae, AExpr::BinaryExpr { .. }))
                .count()
                + 1;
            set_estimated_row_counts(*input, lp_arena, expr_arena, _filter_count, scratch)
        },
        Slice { input, len, .. } => {
            let len = *len as usize;
            let mut out =
                set_estimated_row_counts(*input, lp_arena, expr_arena, _filter_count, scratch);
            apply_slice(&mut out, Some((0, len)));
            out
        },
        Union { .. } => {
            if let Union {
                inputs,
                mut options,
            } = lp_arena.take(root)
            {
                let mut sum_output = (None, 0usize);
                for input in &inputs {
                    let mut out =
                        set_estimated_row_counts(*input, lp_arena, expr_arena, 0, scratch);
                    if let Some((_offset, len)) = options.slice {
                        apply_slice(&mut out, Some((0, len)))
                    }
                    // todo! deal with known as well
                    let out = estimate_sizes(out.0, out.1, out.2);
                    sum_output.1 = sum_output.1.saturating_add(out.1);
                }
                options.rows = sum_output;
                lp_arena.replace(root, Union { inputs, options });
                (sum_output.0, sum_output.1, 0)
            } else {
                unreachable!()
            }
        },
        Join { .. } => {
            if let Join {
                input_left,
                input_right,
                mut options,
                schema,
                left_on,
                right_on,
            } = lp_arena.take(root)
            {
                let mut_options = Arc::make_mut(&mut options);
                let (known_size, estimated_size, filter_count_left) =
                    set_estimated_row_counts(input_left, lp_arena, expr_arena, 0, scratch);
                mut_options.rows_left =
                    estimate_sizes(known_size, estimated_size, filter_count_left);
                let (known_size, estimated_size, filter_count_right) =
                    set_estimated_row_counts(input_right, lp_arena, expr_arena, 0, scratch);
                mut_options.rows_right =
                    estimate_sizes(known_size, estimated_size, filter_count_right);

                let mut out = match options.args.how {
                    JoinType::Left => {
                        let (known_size, estimated_size) = options.rows_left;
                        (known_size, estimated_size, filter_count_left)
                    },
                    JoinType::Cross | JoinType::Full { .. } => {
                        let (known_size_left, estimated_size_left) = options.rows_left;
                        let (known_size_right, estimated_size_right) = options.rows_right;
                        match (known_size_left, known_size_right) {
                            (Some(l), Some(r)) => {
                                (Some(l * r), estimated_size_left, estimated_size_right)
                            },
                            _ => (None, estimated_size_left * estimated_size_right, 0),
                        }
                    },
                    _ => {
                        let (known_size_left, estimated_size_left) = options.rows_left;
                        let (known_size_right, estimated_size_right) = options.rows_right;
                        if estimated_size_left > estimated_size_right {
                            (known_size_left, estimated_size_left, 0)
                        } else {
                            (known_size_right, estimated_size_right, 0)
                        }
                    },
                };
                apply_slice(&mut out, options.args.slice);
                lp_arena.replace(
                    root,
                    Join {
                        input_left,
                        input_right,
                        options,
                        schema,
                        left_on,
                        right_on,
                    },
                );
                out
            } else {
                unreachable!()
            }
        },
        DataFrameScan { df, .. } => {
            let len = df.height();
            (Some(len), len, _filter_count)
        },
        Scan { file_info, .. } => {
            let (known_size, estimated_size) = file_info.row_estimation;
            (known_size, estimated_size, _filter_count)
        },
        #[cfg(feature = "python")]
        PythonScan { .. } => {
            // TODO! get row estimation.
            (None, usize::MAX, _filter_count)
        },
        lp => {
            lp.copy_inputs(scratch);
            let mut sum_output = (None, 0, 0);
            while let Some(input) = scratch.pop() {
                let out =
                    set_estimated_row_counts(input, lp_arena, expr_arena, _filter_count, scratch);
                sum_output.1 += out.1;
                sum_output.2 += out.2;
                sum_output.0 = match sum_output.0 {
                    None => out.0,
                    p => p,
                };
            }
            sum_output
        },
    }
}

pub(crate) fn det_join_schema(
    schema_left: &SchemaRef,
    schema_right: &SchemaRef,
    left_on: &[Expr],
    right_on: &[Expr],
    options: &JoinOptions,
) -> PolarsResult<SchemaRef> {
    match &options.args.how {
        // semi and anti joins are just filtering operations
        // the schema will never change.
        #[cfg(feature = "semi_anti_join")]
        JoinType::Semi | JoinType::Anti => Ok(schema_left.clone()),
        _how => {
            let mut new_schema = Schema::with_capacity(schema_left.len() + schema_right.len());

            for (name, dtype) in schema_left.iter() {
                new_schema.with_column(name.clone(), dtype.clone());
            }
            let should_coalesce = options.args.should_coalesce();

            // make sure that expression are assigned to the schema
            // an expression can have an alias, and change a dtype.
            // we only do this for the left hand side as the right hand side
            // is dropped.
            let mut arena = Arena::with_capacity(8);
            for e in left_on {
                let field = e.to_field_amortized(schema_left, Context::Default, &mut arena)?;
                new_schema.with_column(field.name, field.dtype);
                arena.clear();
            }
            // Except in asof joins. Asof joins are not equi-joins
            // so the columns that are joined on, may have different
            // values so if the right has a different name, it is added to the schema
            #[cfg(feature = "asof_join")]
            if matches!(_how, JoinType::AsOf(_)) {
                for (left_on, right_on) in left_on.iter().zip(right_on) {
                    let field_left =
                        left_on.to_field_amortized(schema_left, Context::Default, &mut arena)?;
                    let field_right =
                        right_on.to_field_amortized(schema_right, Context::Default, &mut arena)?;
                    if should_coalesce && field_left.name != field_right.name {
                        if schema_left.contains(&field_right.name) {
                            new_schema.with_column(
                                _join_suffix_name(&field_right.name, options.args.suffix()).into(),
                                field_right.dtype,
                            );
                        } else {
                            new_schema.with_column(field_right.name, field_right.dtype);
                        }
                    }
                }
            }

            let mut join_on_right: PlHashSet<_> = PlHashSet::with_capacity(right_on.len());
            for e in right_on {
                let field = e.to_field_amortized(schema_right, Context::Default, &mut arena)?;
                join_on_right.insert(field.name);
            }

            // Asof joins are special, if the names are equal they will not be coalesced.
            for (name, dtype) in schema_right.iter() {
                if !join_on_right.contains(name.as_str()) || (!should_coalesce)
                // The names that are joined on are merged
                {
                    if schema_left.contains(name.as_str()) {
                        #[cfg(feature = "asof_join")]
                        if let JoinType::AsOf(asof_options) = &options.args.how {
                            if let (Some(left_by), Some(right_by)) =
                                (&asof_options.left_by, &asof_options.right_by)
                            {
                                {
                                    // Do not add suffix. The column of the left table will be used
                                    if left_by.contains(name) && right_by.contains(name) {
                                        continue;
                                    }
                                }
                            }
                        }

                        let new_name = format_smartstring!("{}{}", name, options.args.suffix());
                        new_schema.with_column(new_name, dtype.clone());
                    } else {
                        new_schema.with_column(name.clone(), dtype.clone());
                    }
                }
            }

            Ok(Arc::new(new_schema))
        },
    }
}

// We don't use an `Arc<Mutex>` because caches should live in different query plans.
// For that reason we have a specialized deep clone.
#[derive(Default)]
pub struct CachedSchema(Mutex<Option<SchemaRef>>);

impl AsRef<Mutex<Option<SchemaRef>>> for CachedSchema {
    fn as_ref(&self) -> &Mutex<Option<SchemaRef>> {
        &self.0
    }
}

impl Deref for CachedSchema {
    type Target = Mutex<Option<SchemaRef>>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl Clone for CachedSchema {
    fn clone(&self) -> Self {
        let inner = self.0.lock().unwrap();
        Self(Mutex::new(inner.clone()))
    }
}

impl CachedSchema {
    pub fn get(&self) -> Option<SchemaRef> {
        self.0.lock().unwrap().clone()
    }
}