polars_plan/plans/aexpr/schema.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
use recursive::recursive;
use super::*;
fn float_type(field: &mut Field) {
let should_coerce = match &field.dtype {
DataType::Float32 => false,
#[cfg(feature = "dtype-decimal")]
DataType::Decimal(..) => true,
DataType::Boolean => true,
dt => dt.is_numeric(),
};
if should_coerce {
field.coerce(DataType::Float64);
}
}
fn validate_expr(node: Node, arena: &Arena<AExpr>, schema: &Schema) -> PolarsResult<()> {
let mut ctx = ToFieldContext {
schema,
ctx: Context::Default,
arena,
validate: true,
};
arena
.get(node)
.to_field_impl(&mut ctx, &mut false)
.map(|_| ())
}
struct ToFieldContext<'a> {
schema: &'a Schema,
ctx: Context,
arena: &'a Arena<AExpr>,
// Traverse all expressions to validate they are in the schema.
validate: bool,
}
impl AExpr {
pub fn to_dtype(
&self,
schema: &Schema,
ctx: Context,
arena: &Arena<AExpr>,
) -> PolarsResult<DataType> {
self.to_field(schema, ctx, arena).map(|f| f.dtype)
}
/// Get Field result of the expression. The schema is the input data.
pub fn to_field(
&self,
schema: &Schema,
ctx: Context,
arena: &Arena<AExpr>,
) -> PolarsResult<Field> {
// Indicates whether we should auto-implode the result. This is initialized to true if we are
// in an aggregation context, so functions that return scalars should explicitly set this
// to false in `to_field_impl`.
let mut agg_list = matches!(ctx, Context::Aggregation);
let mut ctx = ToFieldContext {
schema,
ctx,
arena,
validate: true,
};
let mut field = self.to_field_impl(&mut ctx, &mut agg_list)?;
if agg_list {
field.coerce(field.dtype().clone().implode());
}
Ok(field)
}
/// Get Field result of the expression. The schema is the input data.
pub fn to_field_and_validate(
&self,
schema: &Schema,
ctx: Context,
arena: &Arena<AExpr>,
) -> PolarsResult<Field> {
// Indicates whether we should auto-implode the result. This is initialized to true if we are
// in an aggregation context, so functions that return scalars should explicitly set this
// to false in `to_field_impl`.
let mut agg_list = matches!(ctx, Context::Aggregation);
let mut ctx = ToFieldContext {
schema,
ctx,
arena,
validate: true,
};
let mut field = self.to_field_impl(&mut ctx, &mut agg_list)?;
if agg_list {
field.coerce(field.dtype().clone().implode());
}
Ok(field)
}
/// Get Field result of the expression. The schema is the input data.
///
/// This is taken as `&mut bool` as for some expressions this is determined by the upper node
/// (e.g. `alias`, `cast`).
#[recursive]
pub fn to_field_impl(
&self,
ctx: &mut ToFieldContext,
agg_list: &mut bool,
) -> PolarsResult<Field> {
use AExpr::*;
use DataType::*;
match self {
Len => {
*agg_list = false;
Ok(Field::new(PlSmallStr::from_static(LEN), IDX_DTYPE))
},
Window {
function,
options,
partition_by,
order_by,
} => {
if let WindowType::Over(WindowMapping::Join) = options {
// expr.over(..), defaults to agg-list unless explicitly unset
// by the `to_field_impl` of the `expr`
*agg_list = true;
}
if ctx.validate {
for node in partition_by {
validate_expr(*node, ctx.arena, ctx.schema)?;
}
if let Some((node, _)) = order_by {
validate_expr(*node, ctx.arena, ctx.schema)?;
}
}
let e = ctx.arena.get(*function);
e.to_field_impl(ctx, agg_list)
},
Explode(expr) => {
// `Explode` is a "flatten" operation, which is not the same as returning a scalar.
// Namely, it should be auto-imploded in the aggregation context, so we don't update
// the `agg_list` state here.
let field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
let field = match field.dtype() {
List(inner) => Field::new(field.name().clone(), *inner.clone()),
#[cfg(feature = "dtype-array")]
Array(inner, ..) => Field::new(field.name().clone(), *inner.clone()),
_ => field,
};
Ok(field)
},
Alias(expr, name) => Ok(Field::new(
name.clone(),
ctx.arena.get(*expr).to_field_impl(ctx, agg_list)?.dtype,
)),
Column(name) => ctx
.schema
.get_field(name)
.ok_or_else(|| PolarsError::ColumnNotFound(name.to_string().into())),
Literal(sv) => {
*agg_list = false;
Ok(match sv {
LiteralValue::Series(s) => s.field().into_owned(),
_ => Field::new(sv.output_name().clone(), sv.get_datatype()),
})
},
BinaryExpr { left, right, op } => {
use DataType::*;
let field = match op {
Operator::Lt
| Operator::Gt
| Operator::Eq
| Operator::NotEq
| Operator::LogicalAnd
| Operator::LtEq
| Operator::GtEq
| Operator::NotEqValidity
| Operator::EqValidity
| Operator::LogicalOr => {
let out_field;
let out_name = {
out_field = ctx.arena.get(*left).to_field_impl(ctx, agg_list)?;
out_field.name()
};
Field::new(out_name.clone(), Boolean)
},
Operator::TrueDivide => get_truediv_field(*left, *right, ctx, agg_list)?,
_ => get_arithmetic_field(*left, *right, *op, ctx, agg_list)?,
};
Ok(field)
},
Sort { expr, .. } => ctx.arena.get(*expr).to_field_impl(ctx, agg_list),
Gather {
expr,
idx,
returns_scalar,
..
} => {
if *returns_scalar {
*agg_list = false;
}
if ctx.validate {
validate_expr(*idx, ctx.arena, ctx.schema)?
}
ctx.arena.get(*expr).to_field_impl(ctx, &mut false)
},
SortBy { expr, .. } => ctx.arena.get(*expr).to_field_impl(ctx, agg_list),
Filter { input, by } => {
if ctx.validate {
validate_expr(*by, ctx.arena, ctx.schema)?
}
ctx.arena.get(*input).to_field_impl(ctx, agg_list)
},
Agg(agg) => {
use IRAggExpr::*;
match agg {
Max { input: expr, .. }
| Min { input: expr, .. }
| First(expr)
| Last(expr) => {
*agg_list = false;
ctx.arena.get(*expr).to_field_impl(ctx, &mut false)
},
Sum(expr) => {
*agg_list = false;
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
let dt = match field.dtype() {
Boolean => Some(IDX_DTYPE),
UInt8 | Int8 | Int16 | UInt16 => Some(Int64),
_ => None,
};
if let Some(dt) = dt {
field.coerce(dt);
}
Ok(field)
},
Median(expr) => {
*agg_list = false;
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
match field.dtype {
Date => field.coerce(Datetime(TimeUnit::Milliseconds, None)),
_ => float_type(&mut field),
}
Ok(field)
},
Mean(expr) => {
*agg_list = false;
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
match field.dtype {
Date => field.coerce(Datetime(TimeUnit::Milliseconds, None)),
_ => float_type(&mut field),
}
Ok(field)
},
Implode(expr) => {
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
field.coerce(DataType::List(field.dtype().clone().into()));
Ok(field)
},
Std(expr, _) => {
*agg_list = false;
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
float_type(&mut field);
Ok(field)
},
Var(expr, _) => {
*agg_list = false;
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
float_type(&mut field);
Ok(field)
},
NUnique(expr) => {
*agg_list = false;
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
field.coerce(IDX_DTYPE);
Ok(field)
},
Count(expr, _) => {
*agg_list = false;
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
field.coerce(IDX_DTYPE);
Ok(field)
},
AggGroups(expr) => {
*agg_list = true;
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
field.coerce(List(IDX_DTYPE.into()));
Ok(field)
},
Quantile { expr, .. } => {
*agg_list = false;
let mut field = ctx.arena.get(*expr).to_field_impl(ctx, &mut false)?;
float_type(&mut field);
Ok(field)
},
}
},
Cast { expr, dtype, .. } => {
let field = ctx.arena.get(*expr).to_field_impl(ctx, agg_list)?;
Ok(Field::new(field.name().clone(), dtype.clone()))
},
Ternary { truthy, falsy, .. } => {
let mut agg_list_truthy = *agg_list;
let mut agg_list_falsy = *agg_list;
// During aggregation:
// left: col(foo): list<T> nesting: 1
// right; col(foo).first(): T nesting: 0
// col(foo) + col(foo).first() will have nesting 1 as we still maintain the groups list.
let mut truthy = ctx
.arena
.get(*truthy)
.to_field_impl(ctx, &mut agg_list_truthy)?;
let falsy = ctx
.arena
.get(*falsy)
.to_field_impl(ctx, &mut agg_list_falsy)?;
let st = if let DataType::Null = *truthy.dtype() {
falsy.dtype().clone()
} else {
try_get_supertype(truthy.dtype(), falsy.dtype())?
};
*agg_list = agg_list_truthy | agg_list_falsy;
truthy.coerce(st);
Ok(truthy)
},
AnonymousFunction {
output_type,
input,
options,
..
} => {
let fields = func_args_to_fields(input, ctx, agg_list)?;
polars_ensure!(!fields.is_empty(), ComputeError: "expression: '{}' didn't get any inputs", options.fmt_str);
let out = output_type.get_field(ctx.schema, ctx.ctx, &fields)?;
if options.flags.contains(FunctionFlags::RETURNS_SCALAR) {
*agg_list = false;
} else if !options.is_elementwise() && matches!(ctx.ctx, Context::Aggregation) {
*agg_list = true;
}
Ok(out)
},
Function {
function,
input,
options,
} => {
let fields = func_args_to_fields(input, ctx, agg_list)?;
polars_ensure!(!fields.is_empty(), ComputeError: "expression: '{}' didn't get any inputs", function);
let out = function.get_field(ctx.schema, ctx.ctx, &fields)?;
if options.flags.contains(FunctionFlags::RETURNS_SCALAR) {
*agg_list = false;
} else if !options.is_elementwise() && matches!(ctx.ctx, Context::Aggregation) {
*agg_list = true;
}
Ok(out)
},
Slice {
input,
offset,
length,
} => {
if ctx.validate {
validate_expr(*offset, ctx.arena, ctx.schema)?;
validate_expr(*length, ctx.arena, ctx.schema)?;
}
ctx.arena.get(*input).to_field_impl(ctx, agg_list)
},
}
}
}
fn func_args_to_fields(
input: &[ExprIR],
ctx: &mut ToFieldContext,
agg_list: &mut bool,
) -> PolarsResult<Vec<Field>> {
input
.iter()
.enumerate()
// Default context because `col()` would return a list in aggregation context
.map(|(i, e)| {
let tmp = &mut false;
ctx.arena
.get(e.node())
.to_field_impl(
ctx,
if i == 0 {
// Only mutate first agg_list as that is the dtype of the function.
agg_list
} else {
tmp
},
)
.map(|mut field| {
field.name = e.output_name().clone();
field
})
})
.collect()
}
#[allow(clippy::too_many_arguments)]
fn get_arithmetic_field(
left: Node,
right: Node,
op: Operator,
ctx: &mut ToFieldContext,
agg_list: &mut bool,
) -> PolarsResult<Field> {
use DataType::*;
let left_ae = ctx.arena.get(left);
let right_ae = ctx.arena.get(right);
// don't traverse tree until strictly needed. Can have terrible performance.
// # 3210
// take the left field as a whole.
// don't take dtype and name separate as that splits the tree every node
// leading to quadratic behavior. # 4736
//
// further right_type is only determined when needed.
let mut left_field = left_ae.to_field_impl(ctx, agg_list)?;
let super_type = match op {
Operator::Minus => {
let right_type = right_ae.to_field_impl(ctx, agg_list)?.dtype;
match (&left_field.dtype, &right_type) {
#[cfg(feature = "dtype-struct")]
(Struct(_), Struct(_)) => {
return Ok(left_field);
},
(Duration(_), Datetime(_, _))
| (Datetime(_, _), Duration(_))
| (Duration(_), Date)
| (Date, Duration(_))
| (Duration(_), Time)
| (Time, Duration(_)) => try_get_supertype(left_field.dtype(), &right_type)?,
(Datetime(tu, _), Date) | (Date, Datetime(tu, _)) => Duration(*tu),
// T - T != T if T is a datetime / date
(Datetime(tul, _), Datetime(tur, _)) => Duration(get_time_units(tul, tur)),
(_, Datetime(_, _)) | (Datetime(_, _), _) => {
polars_bail!(InvalidOperation: "{} not allowed on {} and {}", op, left_field.dtype, right_type)
},
(Date, Date) => Duration(TimeUnit::Milliseconds),
(_, Date) | (Date, _) => {
polars_bail!(InvalidOperation: "{} not allowed on {} and {}", op, left_field.dtype, right_type)
},
(Duration(tul), Duration(tur)) => Duration(get_time_units(tul, tur)),
(_, Duration(_)) | (Duration(_), _) => {
polars_bail!(InvalidOperation: "{} not allowed on {} and {}", op, left_field.dtype, right_type)
},
(_, Time) | (Time, _) => {
polars_bail!(InvalidOperation: "{} not allowed on {} and {}", op, left_field.dtype, right_type)
},
(l @ List(a), r @ List(b))
if ![a, b]
.into_iter()
.all(|x| x.is_supported_list_arithmetic_input()) =>
{
polars_bail!(
InvalidOperation:
"cannot {} two list columns with non-numeric inner types: (left: {}, right: {})",
"sub", l, r,
)
},
(list_dtype @ List(_), other_dtype) | (other_dtype, list_dtype @ List(_)) => {
// FIXME: This should not use `try_get_supertype()`! It should instead recursively use the enclosing match block.
// Otherwise we will silently permit addition operations between logical types (see above).
// This currently doesn't cause any problems because the list arithmetic implementation checks and raises errors
// if the leaf types aren't numeric, but it means we don't raise an error until execution and the DSL schema
// may be incorrect.
list_dtype.cast_leaf(try_get_supertype(
list_dtype.leaf_dtype(),
other_dtype.leaf_dtype(),
)?)
},
#[cfg(feature = "dtype-array")]
(list_dtype @ Array(..), other_dtype) | (other_dtype, list_dtype @ Array(..)) => {
list_dtype.cast_leaf(try_get_supertype(
list_dtype.leaf_dtype(),
other_dtype.leaf_dtype(),
)?)
},
(left, right) => try_get_supertype(left, right)?,
}
},
Operator::Plus => {
let right_type = right_ae.to_field_impl(ctx, agg_list)?.dtype;
match (&left_field.dtype, &right_type) {
(Duration(_), Datetime(_, _))
| (Datetime(_, _), Duration(_))
| (Duration(_), Date)
| (Date, Duration(_))
| (Duration(_), Time)
| (Time, Duration(_)) => try_get_supertype(left_field.dtype(), &right_type)?,
(_, Datetime(_, _))
| (Datetime(_, _), _)
| (_, Date)
| (Date, _)
| (Time, _)
| (_, Time) => {
polars_bail!(InvalidOperation: "{} not allowed on {} and {}", op, left_field.dtype, right_type)
},
(Duration(tul), Duration(tur)) => Duration(get_time_units(tul, tur)),
(_, Duration(_)) | (Duration(_), _) => {
polars_bail!(InvalidOperation: "{} not allowed on {} and {}", op, left_field.dtype, right_type)
},
(Boolean, Boolean) => IDX_DTYPE,
(l @ List(a), r @ List(b))
if ![a, b]
.into_iter()
.all(|x| x.is_supported_list_arithmetic_input()) =>
{
polars_bail!(
InvalidOperation:
"cannot {} two list columns with non-numeric inner types: (left: {}, right: {})",
"add", l, r,
)
},
(list_dtype @ List(_), other_dtype) | (other_dtype, list_dtype @ List(_)) => {
list_dtype.cast_leaf(try_get_supertype(
list_dtype.leaf_dtype(),
other_dtype.leaf_dtype(),
)?)
},
#[cfg(feature = "dtype-array")]
(list_dtype @ Array(..), other_dtype) | (other_dtype, list_dtype @ Array(..)) => {
list_dtype.cast_leaf(try_get_supertype(
list_dtype.leaf_dtype(),
other_dtype.leaf_dtype(),
)?)
},
(left, right) => try_get_supertype(left, right)?,
}
},
_ => {
let right_type = right_ae.to_field_impl(ctx, agg_list)?.dtype;
match (&left_field.dtype, &right_type) {
#[cfg(feature = "dtype-struct")]
(Struct(_), Struct(_)) => {
return Ok(left_field);
},
(Datetime(_, _), _)
| (_, Datetime(_, _))
| (Time, _)
| (_, Time)
| (Date, _)
| (_, Date) => {
polars_bail!(InvalidOperation: "{} not allowed on {} and {}", op, left_field.dtype, right_type)
},
(Duration(_), Duration(_)) => {
// True divide handled somewhere else
polars_bail!(InvalidOperation: "{} not allowed on {} and {}", op, left_field.dtype, right_type)
},
(l, Duration(_)) if l.is_numeric() => match op {
Operator::Multiply => {
left_field.coerce(right_type);
return Ok(left_field);
},
_ => {
polars_bail!(InvalidOperation: "{} not allowed on {} and {}", op, left_field.dtype, right_type)
},
},
(l @ List(a), r @ List(b))
if ![a, b]
.into_iter()
.all(|x| x.is_supported_list_arithmetic_input()) =>
{
polars_bail!(
InvalidOperation:
"cannot {} two list columns with non-numeric inner types: (left: {}, right: {})",
op, l, r,
)
},
// List<->primitive operations can be done directly after casting the to the primitive
// supertype for the primitive values on both sides.
(list_dtype @ List(_), other_dtype) | (other_dtype, list_dtype @ List(_)) => {
let dtype = list_dtype.cast_leaf(try_get_supertype(
list_dtype.leaf_dtype(),
other_dtype.leaf_dtype(),
)?);
left_field.coerce(dtype);
return Ok(left_field);
},
#[cfg(feature = "dtype-array")]
(list_dtype @ Array(..), other_dtype) | (other_dtype, list_dtype @ Array(..)) => {
let dtype = list_dtype.cast_leaf(try_get_supertype(
list_dtype.leaf_dtype(),
other_dtype.leaf_dtype(),
)?);
left_field.coerce(dtype);
return Ok(left_field);
},
_ => {
// Avoid needlessly type casting numeric columns during arithmetic
// with literals.
if (left_field.dtype.is_integer() && right_type.is_integer())
|| (left_field.dtype.is_float() && right_type.is_float())
{
match (left_ae, right_ae) {
(AExpr::Literal(_), AExpr::Literal(_)) => {},
(AExpr::Literal(_), _) => {
// literal will be coerced to match right type
left_field.coerce(right_type);
return Ok(left_field);
},
(_, AExpr::Literal(_)) => {
// literal will be coerced to match right type
return Ok(left_field);
},
_ => {},
}
}
},
}
try_get_supertype(&left_field.dtype, &right_type)?
},
};
left_field.coerce(super_type);
Ok(left_field)
}
fn get_truediv_field(
left: Node,
right: Node,
ctx: &mut ToFieldContext,
agg_list: &mut bool,
) -> PolarsResult<Field> {
let mut left_field = ctx.arena.get(left).to_field_impl(ctx, agg_list)?;
let right_field = ctx.arena.get(right).to_field_impl(ctx, agg_list)?;
use DataType::*;
// TODO: Re-investigate this. A lot of "_" is being used on the RHS match because this code
// originally (mostly) only looked at the LHS dtype.
let out_type = match (left_field.dtype(), right_field.dtype()) {
(l @ List(a), r @ List(b))
if ![a, b]
.into_iter()
.all(|x| x.is_supported_list_arithmetic_input()) =>
{
polars_bail!(
InvalidOperation:
"cannot {} two list columns with non-numeric inner types: (left: {}, right: {})",
"div", l, r,
)
},
(list_dtype @ List(_), other_dtype) | (other_dtype, list_dtype @ List(_)) => {
list_dtype.cast_leaf(match (list_dtype.leaf_dtype(), other_dtype.leaf_dtype()) {
(Float32, Float32) => Float32,
(Float32, Float64) | (Float64, Float32) => Float64,
// FIXME: We should properly recurse on the enclosing match block here.
(dt, _) => dt.clone(),
})
},
#[cfg(feature = "dtype-array")]
(list_dtype @ Array(..), other_dtype) | (other_dtype, list_dtype @ Array(..)) => {
list_dtype.cast_leaf(match (list_dtype.leaf_dtype(), other_dtype.leaf_dtype()) {
(Float32, Float32) => Float32,
(Float32, Float64) | (Float64, Float32) => Float64,
// FIXME: We should properly recurse on the enclosing match block here.
(dt, _) => dt.clone(),
})
},
(Float32, _) => Float32,
(dt, _) if dt.is_numeric() => Float64,
#[cfg(feature = "dtype-duration")]
(Duration(_), Duration(_)) => Float64,
#[cfg(feature = "dtype-duration")]
(Duration(_), dt) if dt.is_numeric() => return Ok(left_field),
#[cfg(feature = "dtype-duration")]
(Duration(_), dt) => {
polars_bail!(InvalidOperation: "true division of {} with {} is not allowed", left_field.dtype(), dt)
},
#[cfg(feature = "dtype-datetime")]
(Datetime(_, _), _) => {
polars_bail!(InvalidOperation: "division of 'Datetime' datatype is not allowed")
},
#[cfg(feature = "dtype-time")]
(Time, _) => polars_bail!(InvalidOperation: "division of 'Time' datatype is not allowed"),
#[cfg(feature = "dtype-date")]
(Date, _) => polars_bail!(InvalidOperation: "division of 'Date' datatype is not allowed"),
// we don't know what to do here, best return the dtype
(dt, _) => dt.clone(),
};
left_field.coerce(out_type);
Ok(left_field)
}