polars_plan/plans/aexpr/properties.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
use polars_utils::idx_vec::UnitVec;
use polars_utils::unitvec;
use super::*;
impl AExpr {
pub(crate) fn is_leaf(&self) -> bool {
matches!(self, AExpr::Column(_) | AExpr::Literal(_) | AExpr::Len)
}
pub(crate) fn is_col(&self) -> bool {
matches!(self, AExpr::Column(_))
}
/// Checks whether this expression is elementwise. This only checks the top level expression.
pub(crate) fn is_elementwise_top_level(&self) -> bool {
use AExpr::*;
match self {
AnonymousFunction { options, .. } => options.is_elementwise(),
// Non-strict strptime must be done in-memory to ensure the format
// is consistent across the entire dataframe.
#[cfg(all(feature = "strings", feature = "temporal"))]
Function {
options,
function: FunctionExpr::StringExpr(StringFunction::Strptime(_, opts)),
..
} => {
assert!(options.is_elementwise());
opts.strict
},
Function { options, .. } => options.is_elementwise(),
Literal(v) => v.is_scalar(),
Alias(_, _) | BinaryExpr { .. } | Column(_) | Ternary { .. } | Cast { .. } => true,
Agg { .. }
| Explode(_)
| Filter { .. }
| Gather { .. }
| Len
| Slice { .. }
| Sort { .. }
| SortBy { .. }
| Window { .. } => false,
}
}
}
/// Checks if the top-level expression node is elementwise. If this is the case, then `stack` will
/// be extended further with any nested expression nodes.
pub fn is_elementwise(stack: &mut UnitVec<Node>, ae: &AExpr, expr_arena: &Arena<AExpr>) -> bool {
use AExpr::*;
if !ae.is_elementwise_top_level() {
return false;
}
match ae {
// Literals that aren't being projected are allowed to be non-scalar, so we don't add them
// for inspection. (e.g. `is_in(<literal>)`).
#[cfg(feature = "is_in")]
Function {
function: FunctionExpr::Boolean(BooleanFunction::IsIn),
input,
..
} => (|| {
if let Some(rhs) = input.get(1) {
assert_eq!(input.len(), 2); // A.is_in(B)
let rhs = rhs.node();
if matches!(expr_arena.get(rhs), AExpr::Literal { .. }) {
stack.extend([input[0].node()]);
return;
}
};
ae.inputs_rev(stack);
})(),
_ => ae.inputs_rev(stack),
}
true
}
pub fn all_elementwise<'a, N>(nodes: &'a [N], expr_arena: &Arena<AExpr>) -> bool
where
Node: From<&'a N>,
{
nodes
.iter()
.all(|n| is_elementwise_rec(expr_arena.get(n.into()), expr_arena))
}
/// Recursive variant of `is_elementwise`
pub fn is_elementwise_rec<'a>(mut ae: &'a AExpr, expr_arena: &'a Arena<AExpr>) -> bool {
let mut stack = unitvec![];
loop {
if !is_elementwise(&mut stack, ae, expr_arena) {
return false;
}
let Some(node) = stack.pop() else {
break;
};
ae = expr_arena.get(node);
}
true
}
/// Recursive variant of `is_elementwise` that also forbids casting to categoricals. This function
/// is used to determine if an expression evaluation can be vertically parallelized.
pub fn is_elementwise_rec_no_cat_cast<'a>(mut ae: &'a AExpr, expr_arena: &'a Arena<AExpr>) -> bool {
let mut stack = unitvec![];
loop {
if !is_elementwise(&mut stack, ae, expr_arena) {
return false;
}
#[cfg(feature = "dtype-categorical")]
{
if let AExpr::Cast {
dtype: DataType::Categorical(..),
..
} = ae
{
return false;
}
}
let Some(node) = stack.pop() else {
break;
};
ae = expr_arena.get(node);
}
true
}
/// Check whether filters can be pushed past this expression.
///
/// A query, `with_columns(C).filter(P)` can be re-ordered as `filter(P).with_columns(C)`, iff
/// both P and C permit filter pushdown.
///
/// If filter pushdown is permitted, `stack` is extended with any input expression nodes that this
/// expression may have.
///
/// Note that this function is not recursive - the caller should repeatedly
/// call this function with the `stack` to perform a recursive check.
pub(crate) fn permits_filter_pushdown(
stack: &mut UnitVec<Node>,
ae: &AExpr,
expr_arena: &Arena<AExpr>,
) -> bool {
// This is a subset of an `is_elementwise` check that also blocks exprs that raise errors
// depending on the data. The idea is that, although the success value of these functions
// are elementwise, their error behavior is non-elementwise. Their error behavior is essentially
// performing an aggregation `ANY(evaluation_result_was_error)`, and if this is the case then
// the query result should be an error.
match ae {
// Rows that go OOB on get/gather may be filtered out in earlier operations,
// so we don't push these down.
AExpr::Function {
function: FunctionExpr::ListExpr(ListFunction::Get(false)),
..
} => false,
#[cfg(feature = "list_gather")]
AExpr::Function {
function: FunctionExpr::ListExpr(ListFunction::Gather(false)),
..
} => false,
#[cfg(feature = "dtype-array")]
AExpr::Function {
function: FunctionExpr::ArrayExpr(ArrayFunction::Get(false)),
..
} => false,
// TODO: There are a lot more functions that should be caught here.
ae => is_elementwise(stack, ae, expr_arena),
}
}
pub fn permits_filter_pushdown_rec<'a>(mut ae: &'a AExpr, expr_arena: &'a Arena<AExpr>) -> bool {
let mut stack = unitvec![];
loop {
if !permits_filter_pushdown(&mut stack, ae, expr_arena) {
return false;
}
let Some(node) = stack.pop() else {
break;
};
ae = expr_arena.get(node);
}
true
}
pub fn can_pre_agg_exprs(
exprs: &[ExprIR],
expr_arena: &Arena<AExpr>,
_input_schema: &Schema,
) -> bool {
exprs
.iter()
.all(|e| can_pre_agg(e.node(), expr_arena, _input_schema))
}
/// Checks whether an expression can be pre-aggregated in a group-by. Note that this also must be
/// implemented physically, so this isn't a complete list.
pub fn can_pre_agg(agg: Node, expr_arena: &Arena<AExpr>, _input_schema: &Schema) -> bool {
let aexpr = expr_arena.get(agg);
match aexpr {
AExpr::Len => true,
AExpr::Column(_) | AExpr::Literal(_) => false,
// We only allow expressions that end with an aggregation.
AExpr::Agg(_) => {
let has_aggregation =
|node: Node| has_aexpr(node, expr_arena, |ae| matches!(ae, AExpr::Agg(_)));
// check if the aggregation type is partitionable
// only simple aggregation like col().sum
// that can be divided in to the aggregation of their partitions are allowed
let can_partition = (expr_arena).iter(agg).all(|(_, ae)| {
use AExpr::*;
match ae {
// struct is needed to keep both states
#[cfg(feature = "dtype-struct")]
Agg(IRAggExpr::Mean(_)) => {
// only numeric means for now.
// logical types seem to break because of casts to float.
matches!(
expr_arena
.get(agg)
.get_type(_input_schema, Context::Default, expr_arena)
.map(|dt| { dt.is_primitive_numeric() }),
Ok(true)
)
},
// only allowed expressions
Agg(agg_e) => {
matches!(
agg_e,
IRAggExpr::Min { .. }
| IRAggExpr::Max { .. }
| IRAggExpr::Sum(_)
| IRAggExpr::Last(_)
| IRAggExpr::First(_)
| IRAggExpr::Count(_, true)
)
},
Function { input, options, .. } => {
matches!(options.collect_groups, ApplyOptions::ElementWise)
&& input.len() == 1
&& !has_aggregation(input[0].node())
},
BinaryExpr { left, right, .. } => {
!has_aggregation(*left) && !has_aggregation(*right)
},
Ternary {
truthy,
falsy,
predicate,
..
} => {
!has_aggregation(*truthy)
&& !has_aggregation(*falsy)
&& !has_aggregation(*predicate)
},
Literal(lv) => lv.is_scalar(),
Column(_) | Len | Cast { .. } => true,
_ => false,
}
});
#[cfg(feature = "object")]
{
for name in aexpr_to_leaf_names(agg, expr_arena) {
let dtype = _input_schema.get(&name).unwrap();
if let DataType::Object(_, _) = dtype {
return false;
}
}
}
can_partition
},
_ => false,
}
}