polars_plan/plans/aexpr/
traverse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use super::*;

impl AExpr {
    /// Push nodes at this level to a pre-allocated stack.
    pub(crate) fn nodes<E>(&self, container: &mut E)
    where
        E: Extend<Node>,
    {
        use AExpr::*;

        match self {
            Column(_) | Literal(_) | Len => {},
            Alias(e, _) => container.extend([*e]),
            BinaryExpr { left, op: _, right } => {
                // reverse order so that left is popped first
                container.extend([*right, *left]);
            },
            Cast { expr, .. } => container.extend([*expr]),
            Sort { expr, .. } => container.extend([*expr]),
            Gather { expr, idx, .. } => {
                container.extend([*idx, *expr]);
            },
            SortBy { expr, by, .. } => {
                container.extend(by.iter().cloned());
                // latest, so that it is popped first
                container.extend([*expr]);
            },
            Filter { input, by } => {
                container.extend([*by, *input]);
            },
            Agg(agg_e) => match agg_e.get_input() {
                NodeInputs::Single(node) => container.extend([node]),
                NodeInputs::Many(nodes) => container.extend(nodes),
                NodeInputs::Leaf => {},
            },
            Ternary {
                truthy,
                falsy,
                predicate,
            } => {
                container.extend([*predicate, *falsy, *truthy]);
            },
            AnonymousFunction { input, .. } | Function { input, .. } =>
            // we iterate in reverse order, so that the lhs is popped first and will be found
            // as the root columns/ input columns by `_suffix` and `_keep_name` etc.
            {
                container.extend(input.iter().rev().map(|e| e.node()))
            },
            Explode(e) => container.extend([*e]),
            Window {
                function,
                partition_by,
                order_by,
                options: _,
            } => {
                if let Some((n, _)) = order_by {
                    container.extend([*n]);
                }

                container.extend(partition_by.iter().rev().cloned());

                // latest so that it is popped first
                container.extend([*function]);
            },
            Slice {
                input,
                offset,
                length,
            } => {
                container.extend([*length, *offset, *input]);
            },
        }
    }

    pub fn replace_inputs(mut self, inputs: &[Node]) -> Self {
        use AExpr::*;
        let input = match &mut self {
            Column(_) | Literal(_) | Len => return self,
            Alias(input, _) => input,
            Cast { expr, .. } => expr,
            Explode(input) => input,
            BinaryExpr { left, right, .. } => {
                *right = inputs[0];
                *left = inputs[1];
                return self;
            },
            Gather { expr, idx, .. } => {
                *idx = inputs[0];
                *expr = inputs[1];
                return self;
            },
            Sort { expr, .. } => expr,
            SortBy { expr, by, .. } => {
                *expr = *inputs.last().unwrap();
                by.clear();
                by.extend_from_slice(&inputs[..inputs.len() - 1]);
                return self;
            },
            Filter { input, by, .. } => {
                *by = inputs[0];
                *input = inputs[1];
                return self;
            },
            Agg(a) => {
                match a {
                    IRAggExpr::Quantile { expr, quantile, .. } => {
                        *expr = inputs[0];
                        *quantile = inputs[1];
                    },
                    _ => {
                        a.set_input(inputs[0]);
                    },
                }
                return self;
            },
            Ternary {
                truthy,
                falsy,
                predicate,
            } => {
                *predicate = inputs[0];
                *falsy = inputs[1];
                *truthy = inputs[2];
                return self;
            },
            AnonymousFunction { input, .. } | Function { input, .. } => {
                debug_assert_eq!(input.len(), inputs.len());

                // Assign in reverse order as that was the order in which nodes were extracted.
                for (e, node) in input.iter_mut().zip(inputs.iter().rev()) {
                    e.set_node(*node);
                }
                return self;
            },
            Slice {
                input,
                offset,
                length,
            } => {
                *length = inputs[0];
                *offset = inputs[1];
                *input = inputs[2];
                return self;
            },
            Window {
                function,
                partition_by,
                order_by,
                ..
            } => {
                let offset = order_by.is_some() as usize;
                *function = *inputs.last().unwrap();
                partition_by.clear();
                partition_by.extend_from_slice(&inputs[offset..inputs.len() - 1]);

                if let Some((_, options)) = order_by {
                    *order_by = Some((inputs[0], *options));
                }

                return self;
            },
        };
        *input = inputs[0];
        self
    }
}

impl IRAggExpr {
    pub fn get_input(&self) -> NodeInputs {
        use IRAggExpr::*;
        use NodeInputs::*;
        match self {
            Min { input, .. } => Single(*input),
            Max { input, .. } => Single(*input),
            Median(input) => Single(*input),
            NUnique(input) => Single(*input),
            First(input) => Single(*input),
            Last(input) => Single(*input),
            Mean(input) => Single(*input),
            Implode(input) => Single(*input),
            Quantile { expr, quantile, .. } => Many(vec![*expr, *quantile]),
            Sum(input) => Single(*input),
            Count(input, _) => Single(*input),
            Std(input, _) => Single(*input),
            Var(input, _) => Single(*input),
            AggGroups(input) => Single(*input),
        }
    }
    pub fn set_input(&mut self, input: Node) {
        use IRAggExpr::*;
        let node = match self {
            Min { input, .. } => input,
            Max { input, .. } => input,
            Median(input) => input,
            NUnique(input) => input,
            First(input) => input,
            Last(input) => input,
            Mean(input) => input,
            Implode(input) => input,
            Quantile { expr, .. } => expr,
            Sum(input) => input,
            Count(input, _) => input,
            Std(input, _) => input,
            Var(input, _) => input,
            AggGroups(input) => input,
        };
        *node = input;
    }
}

pub enum NodeInputs {
    Leaf,
    Single(Node),
    Many(Vec<Node>),
}

impl NodeInputs {
    pub fn first(&self) -> Node {
        match self {
            NodeInputs::Single(node) => *node,
            NodeInputs::Many(nodes) => nodes[0],
            NodeInputs::Leaf => panic!(),
        }
    }
}