polars_plan/plans/
options.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#[cfg(feature = "json")]
use std::num::NonZeroUsize;
use std::path::PathBuf;

use bitflags::bitflags;
use polars_core::prelude::*;
use polars_core::utils::SuperTypeOptions;
#[cfg(feature = "csv")]
use polars_io::csv::write::CsvWriterOptions;
#[cfg(feature = "ipc")]
use polars_io::ipc::IpcWriterOptions;
#[cfg(feature = "json")]
use polars_io::json::JsonWriterOptions;
#[cfg(feature = "parquet")]
use polars_io::parquet::write::ParquetWriteOptions;
use polars_io::{is_cloud_url, HiveOptions, RowIndex};
#[cfg(feature = "dynamic_group_by")]
use polars_time::{DynamicGroupOptions, RollingGroupOptions};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::dsl::Selector;
use crate::plans::{ExprIR, PlSmallStr};
#[cfg(feature = "python")]
use crate::prelude::python_udf::PythonFunction;

pub type FileCount = u32;

#[derive(Clone, Debug, PartialEq, Eq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
/// Generic options for all file types.
pub struct FileScanOptions {
    pub slice: Option<(i64, usize)>,
    pub with_columns: Option<Arc<[PlSmallStr]>>,
    pub cache: bool,
    pub row_index: Option<RowIndex>,
    pub rechunk: bool,
    pub file_counter: FileCount,
    pub hive_options: HiveOptions,
    pub glob: bool,
    pub include_file_paths: Option<PlSmallStr>,
    pub allow_missing_columns: bool,
}

#[derive(Clone, Debug, Copy, Default, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct UnionOptions {
    pub slice: Option<(i64, usize)>,
    pub parallel: bool,
    // known row_output, estimated row output
    pub rows: (Option<usize>, usize),
    pub from_partitioned_ds: bool,
    pub flattened_by_opt: bool,
    pub rechunk: bool,
}

#[derive(Clone, Debug, Copy, Default, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct HConcatOptions {
    pub parallel: bool,
}

#[derive(Clone, Debug, PartialEq, Eq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct GroupbyOptions {
    #[cfg(feature = "dynamic_group_by")]
    pub dynamic: Option<DynamicGroupOptions>,
    #[cfg(feature = "dynamic_group_by")]
    pub rolling: Option<RollingGroupOptions>,
    /// Take only a slice of the result
    pub slice: Option<(i64, usize)>,
}

#[derive(Clone, Debug, Eq, PartialEq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct DistinctOptionsDSL {
    /// Subset of columns that will be taken into account.
    pub subset: Option<Vec<Selector>>,
    /// This will maintain the order of the input.
    /// Note that this is more expensive.
    /// `maintain_order` is not supported in the streaming
    /// engine.
    pub maintain_order: bool,
    /// Which rows to keep.
    pub keep_strategy: UniqueKeepStrategy,
}

#[derive(Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "ir_serde", derive(Serialize, Deserialize))]
pub struct DistinctOptionsIR {
    /// Subset of columns that will be taken into account.
    pub subset: Option<Arc<[PlSmallStr]>>,
    /// This will maintain the order of the input.
    /// Note that this is more expensive.
    /// `maintain_order` is not supported in the streaming
    /// engine.
    pub maintain_order: bool,
    /// Which rows to keep.
    pub keep_strategy: UniqueKeepStrategy,
    /// Take only a slice of the result
    pub slice: Option<(i64, usize)>,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum ApplyOptions {
    /// Collect groups to a list and apply the function over the groups.
    /// This can be important in aggregation context.
    /// e.g. [g1, g1, g2] -> [[g1, g1], g2]
    GroupWise,
    /// collect groups to a list and then apply
    /// e.g. [g1, g1, g2] -> list([g1, g1, g2])
    ApplyList,
    /// do not collect before apply
    /// e.g. [g1, g1, g2] -> [g1, g1, g2]
    ElementWise,
}

// a boolean that can only be set to `false` safely
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct UnsafeBool(bool);
impl Default for UnsafeBool {
    fn default() -> Self {
        UnsafeBool(true)
    }
}

bitflags!(
        #[repr(transparent)]
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
        #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
        pub struct FunctionFlags: u8 {
            // Raise if use in group by
            const ALLOW_GROUP_AWARE = 1 << 0;
            // For example a `unique` or a `slice`
            const CHANGES_LENGTH = 1 << 1;
            // The physical expression may rename the output of this function.
            // If set to `false` the physical engine will ensure the left input
            // expression is the output name.
            const ALLOW_RENAME = 1 << 2;
            // if set, then the `Series` passed to the function in the group_by operation
            // will ensure the name is set. This is an extra heap allocation per group.
            const PASS_NAME_TO_APPLY = 1 << 3;
            /// There can be two ways of expanding wildcards:
            ///
            /// Say the schema is 'a', 'b' and there is a function `f`. In this case, `f('*')` can expand
            /// to:
            /// 1. `f('a', 'b')`
            /// 2. `f('a'), f('b')`
            ///
            /// Setting this to true, will lead to behavior 1.
            ///
            /// This also accounts for regex expansion.
            const INPUT_WILDCARD_EXPANSION = 1 << 4;
            /// Automatically explode on unit length if it ran as final aggregation.
            ///
            /// this is the case for aggregations like sum, min, covariance etc.
            /// We need to know this because we cannot see the difference between
            /// the following functions based on the output type and number of elements:
            ///
            /// x: {1, 2, 3}
            ///
            /// head_1(x) -> {1}
            /// sum(x) -> {4}
            const RETURNS_SCALAR = 1 << 5;
            /// This can happen with UDF's that use Polars within the UDF.
            /// This can lead to recursively entering the engine and sometimes deadlocks.
            /// This flag must be set to handle that.
            const OPTIONAL_RE_ENTRANT = 1 << 6;
            /// Whether this function allows no inputs.
            const ALLOW_EMPTY_INPUTS = 1 << 7;
        }
);

impl Default for FunctionFlags {
    fn default() -> Self {
        Self::from_bits_truncate(0) | Self::ALLOW_GROUP_AWARE
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct FunctionOptions {
    /// Collect groups to a list and apply the function over the groups.
    /// This can be important in aggregation context.
    pub collect_groups: ApplyOptions,
    // used for formatting, (only for anonymous functions)
    #[cfg_attr(feature = "serde", serde(skip_deserializing))]
    pub fmt_str: &'static str,
    // if the expression and its inputs should be cast to supertypes
    // `None` -> Don't cast.
    // `Some` -> cast with given options.
    #[cfg_attr(feature = "serde", serde(skip))]
    pub cast_to_supertypes: Option<SuperTypeOptions>,
    // Validate the output of a `map`.
    // this should always be true or we could OOB
    pub check_lengths: UnsafeBool,
    pub flags: FunctionFlags,
}

impl FunctionOptions {
    #[cfg(feature = "fused")]
    pub(crate) unsafe fn no_check_lengths(&mut self) {
        self.check_lengths = UnsafeBool(false);
    }
    pub fn check_lengths(&self) -> bool {
        self.check_lengths.0
    }

    pub fn is_elementwise(&self) -> bool {
        matches!(
            self.collect_groups,
            ApplyOptions::ElementWise | ApplyOptions::ApplyList
        ) && !self
            .flags
            .contains(FunctionFlags::CHANGES_LENGTH | FunctionFlags::RETURNS_SCALAR)
    }
}

impl Default for FunctionOptions {
    fn default() -> Self {
        FunctionOptions {
            collect_groups: ApplyOptions::GroupWise,
            fmt_str: "",
            cast_to_supertypes: None,
            check_lengths: UnsafeBool(true),
            flags: Default::default(),
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct LogicalPlanUdfOptions {
    ///  allow predicate pushdown optimizations
    pub predicate_pd: bool,
    ///  allow projection pushdown optimizations
    pub projection_pd: bool,
    // used for formatting
    pub fmt_str: &'static str,
}

#[derive(Clone, PartialEq, Eq, Debug, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg(feature = "python")]
pub struct PythonOptions {
    /// A function that returns a Python Generator.
    /// The generator should produce Polars DataFrame's.
    pub scan_fn: Option<PythonFunction>,
    /// Schema of the file.
    pub schema: SchemaRef,
    /// Schema the reader will produce when the file is read.
    pub output_schema: Option<SchemaRef>,
    // Projected column names.
    pub with_columns: Option<Arc<[PlSmallStr]>>,
    // Which interface is the python function.
    pub python_source: PythonScanSource,
    /// Optional predicate the reader must apply.
    #[cfg_attr(feature = "serde", serde(skip))]
    pub predicate: PythonPredicate,
    /// A `head` call passed to the reader.
    pub n_rows: Option<usize>,
}

#[derive(Clone, PartialEq, Eq, Debug, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PythonScanSource {
    Pyarrow,
    Cuda,
    #[default]
    IOPlugin,
}

#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub enum PythonPredicate {
    // A pyarrow predicate python expression
    // can be evaluated with python.eval
    PyArrow(String),
    Polars(ExprIR),
    #[default]
    None,
}

#[derive(Clone, PartialEq, Eq, Debug, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct AnonymousScanOptions {
    pub skip_rows: Option<usize>,
    pub fmt_str: &'static str,
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum SinkType {
    Memory,
    File {
        path: Arc<PathBuf>,
        file_type: FileType,
        cloud_options: Option<polars_io::cloud::CloudOptions>,
    },
}

impl SinkType {
    pub(crate) fn is_cloud_destination(&self) -> bool {
        if let Self::File { path, .. } = self {
            if is_cloud_url(path.as_ref()) {
                return true;
            }
        }

        false
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug)]
pub struct FileSinkOptions {
    pub path: Arc<PathBuf>,
    pub file_type: FileType,
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum FileType {
    #[cfg(feature = "parquet")]
    Parquet(ParquetWriteOptions),
    #[cfg(feature = "ipc")]
    Ipc(IpcWriterOptions),
    #[cfg(feature = "csv")]
    Csv(CsvWriterOptions),
    #[cfg(feature = "json")]
    Json(JsonWriterOptions),
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct ProjectionOptions {
    pub run_parallel: bool,
    pub duplicate_check: bool,
    // Should length-1 Series be broadcast to the length of the dataframe.
    // Only used by CSE optimizer
    pub should_broadcast: bool,
}

impl Default for ProjectionOptions {
    fn default() -> Self {
        Self {
            run_parallel: true,
            duplicate_check: true,
            should_broadcast: true,
        }
    }
}

impl ProjectionOptions {
    /// Conservatively merge the options of two [`ProjectionOptions`]
    pub fn merge_options(&self, other: &Self) -> Self {
        Self {
            run_parallel: self.run_parallel & other.run_parallel,
            duplicate_check: self.duplicate_check & other.duplicate_check,
            should_broadcast: self.should_broadcast | other.should_broadcast,
        }
    }
}

// Arguments given to `concat`. Differs from `UnionOptions` as the latter is IR state.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct UnionArgs {
    pub parallel: bool,
    pub rechunk: bool,
    pub to_supertypes: bool,
    pub diagonal: bool,
    // If it is a union from a scan over multiple files.
    pub from_partitioned_ds: bool,
}

impl Default for UnionArgs {
    fn default() -> Self {
        Self {
            parallel: true,
            rechunk: false,
            to_supertypes: false,
            diagonal: false,
            from_partitioned_ds: false,
        }
    }
}

impl From<UnionArgs> for UnionOptions {
    fn from(args: UnionArgs) -> Self {
        UnionOptions {
            slice: None,
            parallel: args.parallel,
            rows: (None, 0),
            from_partitioned_ds: args.from_partitioned_ds,
            flattened_by_opt: false,
            rechunk: args.rechunk,
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg(feature = "json")]
pub struct NDJsonReadOptions {
    pub n_threads: Option<usize>,
    pub infer_schema_length: Option<NonZeroUsize>,
    pub chunk_size: NonZeroUsize,
    pub low_memory: bool,
    pub ignore_errors: bool,
    pub schema: Option<SchemaRef>,
    pub schema_overwrite: Option<SchemaRef>,
}