polars_python/interop/arrow/
to_rust.rsuse polars_core::prelude::*;
use polars_core::utils::accumulate_dataframes_vertical_unchecked;
use polars_core::utils::arrow::ffi;
use polars_core::POOL;
use pyo3::ffi::Py_uintptr_t;
use pyo3::prelude::*;
use pyo3::types::PyList;
use rayon::prelude::*;
use crate::error::PyPolarsErr;
pub fn field_to_rust_arrow(obj: Bound<'_, PyAny>) -> PyResult<ArrowField> {
let mut schema = Box::new(ffi::ArrowSchema::empty());
let schema_ptr = schema.as_mut() as *mut ffi::ArrowSchema;
obj.call_method1("_export_to_c", (schema_ptr as Py_uintptr_t,))?;
let field = unsafe { ffi::import_field_from_c(schema.as_ref()).map_err(PyPolarsErr::from)? };
Ok(field.clone())
}
pub fn field_to_rust(obj: Bound<'_, PyAny>) -> PyResult<Field> {
field_to_rust_arrow(obj).map(|f| (&f).into())
}
pub fn pyarrow_schema_to_rust(obj: &Bound<'_, PyList>) -> PyResult<Schema> {
obj.into_iter().map(field_to_rust).collect()
}
pub fn array_to_rust(obj: &Bound<PyAny>) -> PyResult<ArrayRef> {
let mut array = Box::new(ffi::ArrowArray::empty());
let mut schema = Box::new(ffi::ArrowSchema::empty());
let array_ptr = array.as_mut() as *mut ffi::ArrowArray;
let schema_ptr = schema.as_mut() as *mut ffi::ArrowSchema;
obj.call_method1(
"_export_to_c",
(array_ptr as Py_uintptr_t, schema_ptr as Py_uintptr_t),
)?;
unsafe {
let field = ffi::import_field_from_c(schema.as_ref()).map_err(PyPolarsErr::from)?;
let array = ffi::import_array_from_c(*array, field.dtype).map_err(PyPolarsErr::from)?;
Ok(array)
}
}
pub fn to_rust_df(py: Python, rb: &[Bound<PyAny>], schema: Bound<PyAny>) -> PyResult<DataFrame> {
let ArrowDataType::Struct(fields) = field_to_rust_arrow(schema)?.dtype else {
return Err(PyPolarsErr::Other("invalid top-level schema".into()).into());
};
let schema = ArrowSchema::from_iter(fields);
if rb.is_empty() {
let columns = schema
.iter_values()
.map(|field| {
let field = Field::from(field);
Series::new_empty(field.name, &field.dtype).into_column()
})
.collect::<Vec<_>>();
return Ok(unsafe { DataFrame::new_no_checks_height_from_first(columns) });
}
let dfs = rb
.iter()
.map(|rb| {
let mut run_parallel = false;
let columns = (0..schema.len())
.map(|i| {
let array = rb.call_method1("column", (i,))?;
let arr = array_to_rust(&array)?;
run_parallel |= matches!(
arr.dtype(),
ArrowDataType::Utf8 | ArrowDataType::Dictionary(_, _, _)
);
Ok(arr)
})
.collect::<PyResult<Vec<_>>>()?;
let columns = if run_parallel {
py.allow_threads(|| {
POOL.install(|| {
columns
.into_par_iter()
.enumerate()
.map(|(i, arr)| {
let (_, field) = schema.get_at_index(i).unwrap();
let s = unsafe {
Series::_try_from_arrow_unchecked_with_md(
field.name.clone(),
vec![arr],
field.dtype(),
field.metadata.as_deref(),
)
}
.map_err(PyPolarsErr::from)?
.into_column();
Ok(s)
})
.collect::<PyResult<Vec<_>>>()
})
})
} else {
columns
.into_iter()
.enumerate()
.map(|(i, arr)| {
let (_, field) = schema.get_at_index(i).unwrap();
let s = unsafe {
Series::_try_from_arrow_unchecked_with_md(
field.name.clone(),
vec![arr],
field.dtype(),
field.metadata.as_deref(),
)
}
.map_err(PyPolarsErr::from)?
.into_column();
Ok(s)
})
.collect::<PyResult<Vec<_>>>()
}?;
Ok(unsafe { DataFrame::new_no_checks_height_from_first(columns) })
})
.collect::<PyResult<Vec<_>>>()?;
Ok(accumulate_dataframes_vertical_unchecked(dfs))
}