polars_row/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
//! Row format as defined in `arrow-rs`.
//! This currently partially implements that format only for needed types.
//! For completeness sake the format as defined by `arrow-rs` is as followed:
//! Converts [`ArrayRef`] columns into a [row-oriented](self) format.
//!
//! ## Overview
//!
//! The row format is a variable length byte sequence created by
//! concatenating the encoded form of each column. The encoding for
//! each column depends on its datatype (and sort options).
//!
//! The encoding is carefully designed in such a way that escaping is
//! unnecessary: it is never ambiguous as to whether a byte is part of
//! a sentinel (e.g. null) or a value.
//!
//! ## Unsigned Integer Encoding
//!
//! A null integer is encoded as a `0_u8`, followed by a zero-ed number of bytes corresponding
//! to the integer's length.
//!
//! A valid integer is encoded as `1_u8`, followed by the big-endian representation of the
//! integer.
//!
//! ```text
//! ┌──┬──┬──┬──┐ ┌──┬──┬──┬──┬──┐
//! 3 │03│00│00│00│ │01│00│00│00│03│
//! └──┴──┴──┴──┘ └──┴──┴──┴──┴──┘
//! ┌──┬──┬──┬──┐ ┌──┬──┬──┬──┬──┐
//! 258 │02│01│00│00│ │01│00│00│01│02│
//! └──┴──┴──┴──┘ └──┴──┴──┴──┴──┘
//! ┌──┬──┬──┬──┐ ┌──┬──┬──┬──┬──┐
//! 23423 │7F│5B│00│00│ │01│00│00│5B│7F│
//! └──┴──┴──┴──┘ └──┴──┴──┴──┴──┘
//! ┌──┬──┬──┬──┐ ┌──┬──┬──┬──┬──┐
//! NULL │??│??│??│??│ │00│00│00│00│00│
//! └──┴──┴──┴──┘ └──┴──┴──┴──┴──┘
//!
//! 32-bit (4 bytes) Row Format
//! Value Little Endian
//! ```
//!
//! ## Signed Integer Encoding
//!
//! Signed integers have their most significant sign bit flipped, and are then encoded in the
//! same manner as an unsigned integer.
//!
//! ```text
//! ┌──┬──┬──┬──┐ ┌──┬──┬──┬──┐ ┌──┬──┬──┬──┬──┐
//! 5 │05│00│00│00│ │05│00│00│80│ │01│80│00│00│05│
//! └──┴──┴──┴──┘ └──┴──┴──┴──┘ └──┴──┴──┴──┴──┘
//! ┌──┬──┬──┬──┐ ┌──┬──┬──┬──┐ ┌──┬──┬──┬──┬──┐
//! -5 │FB│FF│FF│FF│ │FB│FF│FF│7F│ │01│7F│FF│FF│FB│
//! └──┴──┴──┴──┘ └──┴──┴──┴──┘ └──┴──┴──┴──┴──┘
//!
//! Value 32-bit (4 bytes) High bit flipped Row Format
//! Little Endian
//! ```
//!
//! ## Float Encoding
//!
//! Floats are converted from IEEE 754 representation to a signed integer representation
//! by flipping all bar the sign bit if they are negative after normalizing nans
//! and signed zeros to a canonical representation.
//!
//! They are then encoded in the same manner as a signed integer.
//!
//! ## Fixed Length Bytes Encoding
//!
//! Fixed length bytes are encoded in the same fashion as primitive types above.
//!
//! For a fixed length array of length `n`:
//!
//! A null is encoded as `0_u8` null sentinel followed by `n` `0_u8` bytes
//!
//! A valid value is encoded as `1_u8` followed by the value bytes
//!
//! ## Variable Length Bytes (including Strings) Encoding
//!
//! A null is encoded as a `0_u8`.
//!
//! An empty byte array is encoded as `1_u8`.
//!
//! A non-null, non-empty byte array is encoded as `2_u8` followed by the byte array
//! encoded using a block based scheme described below.
//!
//! The byte array is broken up into 32-byte blocks, each block is written in turn
//! to the output, followed by `0xFF_u8`. The final block is padded to 32-bytes
//! with `0_u8` and written to the output, followed by the un-padded length in bytes
//! of this final block as a `u8`.
//!
//! Note the following example encodings use a block size of 4 bytes,
//! as opposed to 32 bytes for brevity:
//!
//! ```text
//! ┌───┬───┬───┬───┬───┬───┐
//! "MEEP" │02 │'M'│'E'│'E'│'P'│04 │
//! └───┴───┴───┴───┴───┴───┘
//!
//! ┌───┐
//! "" │01 |
//! └───┘
//!
//! NULL ┌───┐
//! │00 │
//! └───┘
//!
//! "Defenestration" ┌───┬───┬───┬───┬───┬───┐
//! │02 │'D'│'e'│'f'│'e'│FF │
//! └───┼───┼───┼───┼───┼───┤
//! │'n'│'e'│'s'│'t'│FF │
//! ├───┼───┼───┼───┼───┤
//! │'r'│'a'│'t'│'r'│FF │
//! ├───┼───┼───┼───┼───┤
//! │'a'│'t'│'i'│'o'│FF │
//! ├───┼───┼───┼───┼───┤
//! │'n'│00 │00 │00 │01 │
//! └───┴───┴───┴───┴───┘
//! ```
//!
//! This approach is loosely inspired by [COBS] encoding, and chosen over more traditional
//! [byte stuffing] as it is more amenable to vectorisation, in particular AVX-256.
//!
//! For the unordered row encoding we use a simpler scheme, we prepend the length
//! encoded as 4 bytes followed by the raw data, with nulls being marked with a
//! length of u32::MAX.
//!
//! ## Dictionary Encoding
//!
//! [`RowsEncoded`] needs to support converting dictionary encoded arrays with unsorted, and
//! potentially distinct dictionaries. One simple mechanism to avoid this would be to reverse
//! the dictionary encoding, and encode the array values directly, however, this would lose
//! the benefits of dictionary encoding to reduce memory and CPU consumption.
//!
//! As such the [`RowsEncoded`] creates an order-preserving mapping
//! for each dictionary encoded column, which allows new dictionary
//! values to be added whilst preserving the sort order.
//!
//! A null dictionary value is encoded as `0_u8`.
//!
//! A non-null dictionary value is encoded as `1_u8` followed by a null-terminated byte array
//! key determined by the order-preserving dictionary encoding
//!
//! ```text
//! ┌──────────┐ ┌─────┐
//! │ "Bar" │ ───────────────▶│ 01 │
//! └──────────┘ └─────┘
//! ┌──────────┐ ┌─────┬─────┐
//! │"Fabulous"│ ───────────────▶│ 01 │ 02 │
//! └──────────┘ └─────┴─────┘
//! ┌──────────┐ ┌─────┐
//! │ "Soup" │ ───────────────▶│ 05 │
//! └──────────┘ └─────┘
//! ┌──────────┐ ┌─────┐
//! │ "ZZ" │ ───────────────▶│ 07 │
//! └──────────┘ └─────┘
//!
//! Example Order Preserving Mapping
//! ```
//! Using the map above, the corresponding row format will be
//!
//! ```text
//! ┌─────┬─────┬─────┬─────┐
//! "Fabulous" │ 01 │ 03 │ 05 │ 00 │
//! └─────┴─────┴─────┴─────┘
//!
//! ┌─────┬─────┬─────┐
//! "ZZ" │ 01 │ 07 │ 00 │
//! └─────┴─────┴─────┘
//!
//! ┌─────┐
//! NULL │ 00 │
//! └─────┘
//!
//! Input Row Format
//! ```
//!
//! ## Struct Encoding
//!
//! A null is encoded as a `0_u8`.
//!
//! A valid value is encoded as `1_u8` followed by the row encoding of each child.
//!
//! This encoding effectively flattens the schema in a depth-first fashion.
//!
//! For example
//!
//! ```text
//! ┌───────┬────────────────────────┬───────┐
//! │ Int32 │ Struct[Int32, Float32] │ Int32 │
//! └───────┴────────────────────────┴───────┘
//! ```
//!
//! Is encoded as
//!
//! ```text
//! ┌───────┬───────────────┬───────┬─────────┬───────┐
//! │ Int32 │ Null Sentinel │ Int32 │ Float32 │ Int32 │
//! └───────┴───────────────┴───────┴─────────┴───────┘
//! ```
//!
//! ## List Encoding
//!
//! Lists are encoded by first encoding all child elements to the row format.
//!
//! A "canonical byte array" is then constructed by concatenating the row
//! encodings of all their elements into a single binary array, followed
//! by the lengths of each encoded row, and the number of elements, encoded
//! as big endian `u32`.
//!
//! This canonical byte array is then encoded using the variable length byte
//! encoding described above.
//!
//! _The lengths are not strictly necessary but greatly simplify decode, they
//! may be removed in a future iteration_.
//!
//! For example given:
//!
//! ```text
//! [1_u8, 2_u8, 3_u8]
//! [1_u8, null]
//! []
//! null
//! ```
//!
//! The elements would be converted to:
//!
//! ```text
//! ┌──┬──┐ ┌──┬──┐ ┌──┬──┐ ┌──┬──┐ ┌──┬──┐
//! 1 │01│01│ 2 │01│02│ 3 │01│03│ 1 │01│01│ null │00│00│
//! └──┴──┘ └──┴──┘ └──┴──┘ └──┴──┘ └──┴──┘
//!```
//!
//! Which would be grouped into the following canonical byte arrays:
//!
//! ```text
//! ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
//! [1_u8, 2_u8, 3_u8] │01│01│01│02│01│03│00│00│00│02│00│00│00│02│00│00│00│02│00│00│00│03│
//! └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
//! └──── rows ────┘ └───────── row lengths ─────────┘ └─ count ─┘
//!
//! ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
//! [1_u8, null] │01│01│00│00│00│00│00│02│00│00│00│02│00│00│00│02│
//! └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
//!```
//!
//! With `[]` represented by an empty byte array, and `null` a null byte array.
//!
//! These byte arrays will then be encoded using the variable length byte encoding
//! described above.
//!
//! # Ordering
//!
//! ## Float Ordering
//!
//! Floats are totally ordered just like in the rest of Polars,
//! -inf < neg < -0.0 = 0.0 < pos < inf < nan, with all nans being equal.
//!
//! ## Null Ordering
//!
//! The encoding described above will order nulls first, this can be inverted by representing
//! nulls as `0xFF_u8` instead of `0_u8`
//!
//! ## Reverse Column Ordering
//!
//! The order of a given column can be reversed by negating the encoded bytes of non-null values
//!
//! [COBS]: https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing
//! [byte stuffing]: https://en.wikipedia.org/wiki/High-Level_Data_Link_Control#Asynchronous_framing
extern crate core;
pub mod decode;
pub mod encode;
pub(crate) mod fixed;
mod row;
mod utils;
pub(crate) mod variable;
use arrow::array::*;
pub type ArrayRef = Box<dyn Array>;
pub use encode::{
convert_columns, convert_columns_amortized, convert_columns_amortized_no_order,
convert_columns_no_order,
};
pub use row::{EncodingField, RowsEncoded};