polars_sql/
sql_expr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
//! Expressions that are supported by the Polars SQL interface.
//!
//! This is useful for syntax highlighting
//!
//! This module defines:
//! - all Polars SQL keywords [`all_keywords`]
//! - all of polars SQL functions [`all_functions`]

use std::fmt::Display;
use std::ops::Div;

use polars_core::export::regex;
use polars_core::prelude::*;
use polars_lazy::prelude::*;
use polars_plan::prelude::typed_lit;
use polars_plan::prelude::LiteralValue::Null;
use polars_time::Duration;
use rand::distributions::Alphanumeric;
use rand::{thread_rng, Rng};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use sqlparser::ast::{
    BinaryOperator as SQLBinaryOperator, BinaryOperator, CastFormat, CastKind,
    DataType as SQLDataType, DateTimeField, Expr as SQLExpr, Function as SQLFunction, Ident,
    Interval, Query as Subquery, SelectItem, Subscript, TimezoneInfo, TrimWhereField,
    UnaryOperator, Value as SQLValue,
};
use sqlparser::dialect::GenericDialect;
use sqlparser::parser::{Parser, ParserOptions};

use crate::functions::SQLFunctionVisitor;
use crate::types::{
    bitstring_to_bytes_literal, is_iso_date, is_iso_datetime, is_iso_time, map_sql_dtype_to_polars,
};
use crate::SQLContext;

#[inline]
#[cold]
#[must_use]
/// Convert a Display-able error to PolarsError::SQLInterface
pub fn to_sql_interface_err(err: impl Display) -> PolarsError {
    PolarsError::SQLInterface(err.to_string().into())
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Copy, PartialEq, Debug, Eq, Hash)]
/// Categorises the type of (allowed) subquery constraint
pub enum SubqueryRestriction {
    /// Subquery must return a single column
    SingleColumn,
    // SingleRow,
    // SingleValue,
    // Any
}

/// Recursively walks a SQL Expr to create a polars Expr
pub(crate) struct SQLExprVisitor<'a> {
    ctx: &'a mut SQLContext,
    active_schema: Option<&'a Schema>,
}

impl SQLExprVisitor<'_> {
    fn array_expr_to_series(&mut self, elements: &[SQLExpr]) -> PolarsResult<Series> {
        let array_elements = elements
            .iter()
            .map(|e| match e {
                SQLExpr::Value(v) => self.visit_any_value(v, None),
                SQLExpr::UnaryOp { op, expr } => match expr.as_ref() {
                    SQLExpr::Value(v) => self.visit_any_value(v, Some(op)),
                    _ => Err(polars_err!(SQLInterface: "expression {:?} is not currently supported", e)),
                },
                SQLExpr::Array(_) => {
                    // TODO: nested arrays (handle FnMut issues)
                    // let srs = self.array_expr_to_series(&[e.clone()])?;
                    // Ok(AnyValue::List(srs))
                    Err(polars_err!(SQLInterface: "nested array literals are not currently supported:\n{:?}", e))
                },
                _ => Err(polars_err!(SQLInterface: "expression {:?} is not currently supported", e)),
            })
            .collect::<PolarsResult<Vec<_>>>()?;

        Series::from_any_values(PlSmallStr::EMPTY, &array_elements, true)
    }

    fn visit_expr(&mut self, expr: &SQLExpr) -> PolarsResult<Expr> {
        match expr {
            SQLExpr::AllOp {
                left,
                compare_op,
                right,
            } => self.visit_all(left, compare_op, right),
            SQLExpr::AnyOp {
                left,
                compare_op,
                right,
            } => self.visit_any(left, compare_op, right),
            SQLExpr::Array(arr) => self.visit_array_expr(&arr.elem, true, None),
            SQLExpr::Between {
                expr,
                negated,
                low,
                high,
            } => self.visit_between(expr, *negated, low, high),
            SQLExpr::BinaryOp { left, op, right } => self.visit_binary_op(left, op, right),
            SQLExpr::Cast {
                kind,
                expr,
                data_type,
                format,
            } => self.visit_cast(expr, data_type, format, kind),
            SQLExpr::Ceil { expr, .. } => Ok(self.visit_expr(expr)?.ceil()),
            SQLExpr::CompoundIdentifier(idents) => self.visit_compound_identifier(idents),
            SQLExpr::Extract { field, expr } => {
                parse_extract_date_part(self.visit_expr(expr)?, field)
            },
            SQLExpr::Floor { expr, .. } => Ok(self.visit_expr(expr)?.floor()),
            SQLExpr::Function(function) => self.visit_function(function),
            SQLExpr::Identifier(ident) => self.visit_identifier(ident),
            SQLExpr::InList {
                expr,
                list,
                negated,
            } => {
                let expr = self.visit_expr(expr)?;
                let elems = self.visit_array_expr(list, false, Some(&expr))?;
                let is_in = expr.is_in(elems);
                Ok(if *negated { is_in.not() } else { is_in })
            },
            SQLExpr::InSubquery {
                expr,
                subquery,
                negated,
            } => self.visit_in_subquery(expr, subquery, *negated),
            SQLExpr::Interval(interval) => self.visit_interval(interval),
            SQLExpr::IsDistinctFrom(e1, e2) => {
                Ok(self.visit_expr(e1)?.neq_missing(self.visit_expr(e2)?))
            },
            SQLExpr::IsFalse(expr) => Ok(self.visit_expr(expr)?.eq(lit(false))),
            SQLExpr::IsNotDistinctFrom(e1, e2) => {
                Ok(self.visit_expr(e1)?.eq_missing(self.visit_expr(e2)?))
            },
            SQLExpr::IsNotFalse(expr) => Ok(self.visit_expr(expr)?.eq(lit(false)).not()),
            SQLExpr::IsNotNull(expr) => Ok(self.visit_expr(expr)?.is_not_null()),
            SQLExpr::IsNotTrue(expr) => Ok(self.visit_expr(expr)?.eq(lit(true)).not()),
            SQLExpr::IsNull(expr) => Ok(self.visit_expr(expr)?.is_null()),
            SQLExpr::IsTrue(expr) => Ok(self.visit_expr(expr)?.eq(lit(true))),
            SQLExpr::Like {
                negated,
                expr,
                pattern,
                escape_char,
            } => self.visit_like(*negated, expr, pattern, escape_char, false),
            SQLExpr::ILike {
                negated,
                expr,
                pattern,
                escape_char,
            } => self.visit_like(*negated, expr, pattern, escape_char, true),
            SQLExpr::Nested(expr) => self.visit_expr(expr),
            SQLExpr::Position { expr, r#in } => Ok(
                // note: SQL is 1-indexed
                (self
                    .visit_expr(r#in)?
                    .str()
                    .find(self.visit_expr(expr)?, true)
                    + typed_lit(1u32))
                .fill_null(typed_lit(0u32)),
            ),
            SQLExpr::RLike {
                // note: parses both RLIKE and REGEXP
                negated,
                expr,
                pattern,
                regexp: _,
            } => {
                let matches = self
                    .visit_expr(expr)?
                    .str()
                    .contains(self.visit_expr(pattern)?, true);
                Ok(if *negated { matches.not() } else { matches })
            },
            SQLExpr::Subscript { expr, subscript } => self.visit_subscript(expr, subscript),
            SQLExpr::Subquery(_) => polars_bail!(SQLInterface: "unexpected subquery"),
            SQLExpr::Trim {
                expr,
                trim_where,
                trim_what,
                trim_characters,
            } => self.visit_trim(expr, trim_where, trim_what, trim_characters),
            SQLExpr::TypedString { data_type, value } => match data_type {
                SQLDataType::Date => {
                    if is_iso_date(value) {
                        Ok(lit(value.as_str()).cast(DataType::Date))
                    } else {
                        polars_bail!(SQLSyntax: "invalid DATE literal '{}'", value)
                    }
                },
                SQLDataType::Time(None, TimezoneInfo::None) => {
                    if is_iso_time(value) {
                        Ok(lit(value.as_str()).str().to_time(StrptimeOptions {
                            strict: true,
                            ..Default::default()
                        }))
                    } else {
                        polars_bail!(SQLSyntax: "invalid TIME literal '{}'", value)
                    }
                },
                SQLDataType::Timestamp(None, TimezoneInfo::None) | SQLDataType::Datetime(None) => {
                    if is_iso_datetime(value) {
                        Ok(lit(value.as_str()).str().to_datetime(
                            None,
                            None,
                            StrptimeOptions {
                                strict: true,
                                ..Default::default()
                            },
                            lit("latest"),
                        ))
                    } else {
                        let fn_name = match data_type {
                            SQLDataType::Timestamp(_, _) => "TIMESTAMP",
                            SQLDataType::Datetime(_) => "DATETIME",
                            _ => unreachable!(),
                        };
                        polars_bail!(SQLSyntax: "invalid {} literal '{}'", fn_name, value)
                    }
                },
                _ => {
                    polars_bail!(SQLInterface: "typed literal should be one of DATE, DATETIME, TIME, or TIMESTAMP (found {})", data_type)
                },
            },
            SQLExpr::UnaryOp { op, expr } => self.visit_unary_op(op, expr),
            SQLExpr::Value(value) => self.visit_literal(value),
            SQLExpr::Wildcard => Ok(Expr::Wildcard),
            e @ SQLExpr::Case { .. } => self.visit_case_when_then(e),
            other => {
                polars_bail!(SQLInterface: "expression {:?} is not currently supported", other)
            },
        }
    }

    fn visit_subquery(
        &mut self,
        subquery: &Subquery,
        restriction: SubqueryRestriction,
    ) -> PolarsResult<Expr> {
        if subquery.with.is_some() {
            polars_bail!(SQLSyntax: "SQL subquery cannot be a CTE 'WITH' clause");
        }
        let mut lf = self.ctx.execute_query_no_ctes(subquery)?;
        let schema = self.ctx.get_frame_schema(&mut lf)?;

        if restriction == SubqueryRestriction::SingleColumn {
            if schema.len() != 1 {
                polars_bail!(SQLSyntax: "SQL subquery returns more than one column");
            }
            let rand_string: String = thread_rng()
                .sample_iter(&Alphanumeric)
                .take(16)
                .map(char::from)
                .collect();

            let schema_entry = schema.get_at_index(0);
            if let Some((old_name, _)) = schema_entry {
                let new_name = String::from(old_name.as_str()) + rand_string.as_str();
                lf = lf.rename([old_name.to_string()], [new_name.clone()], true);
                return Ok(Expr::SubPlan(
                    SpecialEq::new(Arc::new(lf.logical_plan)),
                    vec![new_name],
                ));
            }
        };
        polars_bail!(SQLInterface: "subquery type not supported");
    }

    /// Visit a single SQL identifier.
    ///
    /// e.g. column
    fn visit_identifier(&self, ident: &Ident) -> PolarsResult<Expr> {
        Ok(col(ident.value.as_str()))
    }

    /// Visit a compound SQL identifier
    ///
    /// e.g. tbl.column, struct.field, tbl.struct.field (inc. nested struct fields)
    fn visit_compound_identifier(&mut self, idents: &[Ident]) -> PolarsResult<Expr> {
        Ok(resolve_compound_identifier(self.ctx, idents, self.active_schema)?[0].clone())
    }

    fn visit_interval(&self, interval: &Interval) -> PolarsResult<Expr> {
        if interval.last_field.is_some()
            || interval.leading_field.is_some()
            || interval.leading_precision.is_some()
            || interval.fractional_seconds_precision.is_some()
        {
            polars_bail!(SQLSyntax: "unsupported interval syntax ('{}')", interval)
        }
        let s = match &*interval.value {
            SQLExpr::UnaryOp { .. } => {
                polars_bail!(SQLSyntax: "unary ops are not valid on interval strings; found {}", interval.value)
            },
            SQLExpr::Value(SQLValue::SingleQuotedString(s)) => Some(s),
            _ => None,
        };
        match s {
            Some(s) if s.contains('-') => {
                polars_bail!(SQLInterface: "minus signs are not yet supported in interval strings; found '{}'", s)
            },
            Some(s) => Ok(lit(Duration::parse_interval(s))),
            None => polars_bail!(SQLSyntax: "invalid interval {:?}", interval),
        }
    }

    fn visit_like(
        &mut self,
        negated: bool,
        expr: &SQLExpr,
        pattern: &SQLExpr,
        escape_char: &Option<String>,
        case_insensitive: bool,
    ) -> PolarsResult<Expr> {
        if escape_char.is_some() {
            polars_bail!(SQLInterface: "ESCAPE char for LIKE/ILIKE is not currently supported; found '{}'", escape_char.clone().unwrap());
        }
        let pat = match self.visit_expr(pattern) {
            Ok(Expr::Literal(LiteralValue::String(s))) => s,
            _ => {
                polars_bail!(SQLSyntax: "LIKE/ILIKE pattern must be a string literal; found {}", pattern)
            },
        };
        if pat.is_empty() || (!case_insensitive && pat.chars().all(|c| !matches!(c, '%' | '_'))) {
            // empty string or other exact literal match (eg: no wildcard chars)
            let op = if negated {
                BinaryOperator::NotEq
            } else {
                BinaryOperator::Eq
            };
            self.visit_binary_op(expr, &op, pattern)
        } else {
            // create regex from pattern containing SQL wildcard chars ('%' => '.*', '_' => '.')
            let mut rx = regex::escape(pat.as_str())
                .replace('%', ".*")
                .replace('_', ".");

            rx = format!("^{}{}$", if case_insensitive { "(?i)" } else { "" }, rx);

            let expr = self.visit_expr(expr)?;
            let matches = expr.str().contains(lit(rx), true);
            Ok(if negated { matches.not() } else { matches })
        }
    }

    fn visit_subscript(&mut self, expr: &SQLExpr, subscript: &Subscript) -> PolarsResult<Expr> {
        let expr = self.visit_expr(expr)?;
        Ok(match subscript {
            Subscript::Index { index } => {
                let idx = adjust_one_indexed_param(self.visit_expr(index)?, true);
                expr.list().get(idx, true)
            },
            Subscript::Slice { .. } => {
                polars_bail!(SQLSyntax: "array slice syntax is not currently supported")
            },
        })
    }

    /// Handle implicit temporal string comparisons.
    ///
    /// eg: "dt >= '2024-04-30'", or "dtm::date = '2077-10-10'"
    fn convert_temporal_strings(&mut self, left: &Expr, right: &Expr) -> Expr {
        if let (Some(name), Some(s), expr_dtype) = match (left, right) {
            // identify "col <op> string" expressions
            (Expr::Column(name), Expr::Literal(LiteralValue::String(s))) => {
                (Some(name.clone()), Some(s), None)
            },
            // identify "CAST(expr AS type) <op> string" and/or "expr::type <op> string" expressions
            (Expr::Cast { expr, dtype, .. }, Expr::Literal(LiteralValue::String(s))) => {
                match &**expr {
                    Expr::Column(name) => (Some(name.clone()), Some(s), Some(dtype)),
                    _ => (None, Some(s), Some(dtype)),
                }
            },
            _ => (None, None, None),
        } {
            if expr_dtype.is_none() && self.active_schema.is_none() {
                right.clone()
            } else {
                let left_dtype = expr_dtype.or_else(|| {
                    self.active_schema
                        .as_ref()
                        .and_then(|schema| schema.get(&name))
                });
                match left_dtype {
                    Some(DataType::Time) if is_iso_time(s) => {
                        right.clone().str().to_time(StrptimeOptions {
                            strict: true,
                            ..Default::default()
                        })
                    },
                    Some(DataType::Date) if is_iso_date(s) => {
                        right.clone().str().to_date(StrptimeOptions {
                            strict: true,
                            ..Default::default()
                        })
                    },
                    Some(DataType::Datetime(tu, tz)) if is_iso_datetime(s) || is_iso_date(s) => {
                        if s.len() == 10 {
                            // handle upcast from ISO date string (10 chars) to datetime
                            lit(format!("{}T00:00:00", s))
                        } else {
                            lit(s.replacen(' ', "T", 1))
                        }
                        .str()
                        .to_datetime(
                            Some(*tu),
                            tz.clone(),
                            StrptimeOptions {
                                strict: true,
                                ..Default::default()
                            },
                            lit("latest"),
                        )
                    },
                    _ => right.clone(),
                }
            }
        } else {
            right.clone()
        }
    }

    fn struct_field_access_expr(
        &mut self,
        expr: &Expr,
        path: &str,
        infer_index: bool,
    ) -> PolarsResult<Expr> {
        let path_elems = if path.starts_with('{') && path.ends_with('}') {
            path.trim_matches(|c| c == '{' || c == '}')
        } else {
            path
        }
        .split(',');

        let mut expr = expr.clone();
        for p in path_elems {
            let p = p.trim();
            expr = if infer_index {
                match p.parse::<i64>() {
                    Ok(idx) => expr.list().get(lit(idx), true),
                    Err(_) => expr.struct_().field_by_name(p),
                }
            } else {
                expr.struct_().field_by_name(p)
            }
        }
        Ok(expr)
    }

    /// Visit a SQL binary operator.
    ///
    /// e.g. "column + 1", "column1 <= column2"
    fn visit_binary_op(
        &mut self,
        left: &SQLExpr,
        op: &BinaryOperator,
        right: &SQLExpr,
    ) -> PolarsResult<Expr> {
        let lhs = self.visit_expr(left)?;
        let mut rhs = self.visit_expr(right)?;
        rhs = self.convert_temporal_strings(&lhs, &rhs);

        Ok(match op {
            // ----
            // Bitwise operators
            // ----
            SQLBinaryOperator::BitwiseAnd => lhs.and(rhs),  // "x & y"
            SQLBinaryOperator::BitwiseOr => lhs.or(rhs),  // "x | y"
            SQLBinaryOperator::Xor => lhs.xor(rhs),  // "x XOR y"

            // ----
            // General operators
            // ----
            SQLBinaryOperator::And => lhs.and(rhs),  // "x AND y"
            SQLBinaryOperator::Divide => lhs / rhs,  // "x / y"
            SQLBinaryOperator::DuckIntegerDivide => lhs.floor_div(rhs).cast(DataType::Int64),  // "x // y"
            SQLBinaryOperator::Eq => lhs.eq(rhs),  // "x = y"
            SQLBinaryOperator::Gt => lhs.gt(rhs),  // "x > y"
            SQLBinaryOperator::GtEq => lhs.gt_eq(rhs),  // "x >= y"
            SQLBinaryOperator::Lt => lhs.lt(rhs),  // "x < y"
            SQLBinaryOperator::LtEq => lhs.lt_eq(rhs),  // "x <= y"
            SQLBinaryOperator::Minus => lhs - rhs,  // "x - y"
            SQLBinaryOperator::Modulo => lhs % rhs,  // "x % y"
            SQLBinaryOperator::Multiply => lhs * rhs,  // "x * y"
            SQLBinaryOperator::NotEq => lhs.eq(rhs).not(),  // "x != y"
            SQLBinaryOperator::Or => lhs.or(rhs),  // "x OR y"
            SQLBinaryOperator::Plus => lhs + rhs,  // "x + y"
            SQLBinaryOperator::Spaceship => lhs.eq_missing(rhs),  // "x <=> y"
            SQLBinaryOperator::StringConcat => {  // "x || y"
                lhs.cast(DataType::String) + rhs.cast(DataType::String)
            },
            SQLBinaryOperator::PGStartsWith => lhs.str().starts_with(rhs),  // "x ^@ y"
            // ----
            // Regular expression operators
            // ----
            SQLBinaryOperator::PGRegexMatch => match rhs {  // "x ~ y"
                Expr::Literal(LiteralValue::String(_)) => lhs.str().contains(rhs, true),
                _ => polars_bail!(SQLSyntax: "invalid pattern for '~' operator: {:?}", rhs),
            },
            SQLBinaryOperator::PGRegexNotMatch => match rhs {  // "x !~ y"
                Expr::Literal(LiteralValue::String(_)) => lhs.str().contains(rhs, true).not(),
                _ => polars_bail!(SQLSyntax: "invalid pattern for '!~' operator: {:?}", rhs),
            },
            SQLBinaryOperator::PGRegexIMatch => match rhs {  // "x ~* y"
                Expr::Literal(LiteralValue::String(pat)) => {
                    lhs.str().contains(lit(format!("(?i){}", pat)), true)
                },
                _ => polars_bail!(SQLSyntax: "invalid pattern for '~*' operator: {:?}", rhs),
            },
            SQLBinaryOperator::PGRegexNotIMatch => match rhs {  // "x !~* y"
                Expr::Literal(LiteralValue::String(pat)) => {
                    lhs.str().contains(lit(format!("(?i){}", pat)), true).not()
                },
                _ => {
                    polars_bail!(SQLSyntax: "invalid pattern for '!~*' operator: {:?}", rhs)
                },
            },
            // ----
            // LIKE/ILIKE operators
            // ----
            SQLBinaryOperator::PGLikeMatch  // "x ~~ y"
            | SQLBinaryOperator::PGNotLikeMatch  // "x !~~ y"
            | SQLBinaryOperator::PGILikeMatch  // "x ~~* y"
            | SQLBinaryOperator::PGNotILikeMatch => {  // "x !~~* y"
                let expr = if matches!(
                    op,
                    SQLBinaryOperator::PGLikeMatch | SQLBinaryOperator::PGNotLikeMatch
                ) {
                    SQLExpr::Like {
                        negated: matches!(op, SQLBinaryOperator::PGNotLikeMatch),
                        expr: Box::new(left.clone()),
                        pattern: Box::new(right.clone()),
                        escape_char: None,
                    }
                } else {
                    SQLExpr::ILike {
                        negated: matches!(op, SQLBinaryOperator::PGNotILikeMatch),
                        expr: Box::new(left.clone()),
                        pattern: Box::new(right.clone()),
                        escape_char: None,
                    }
                };
                self.visit_expr(&expr)?
            },
            // ----
            // JSON/Struct field access operators
            // ----
            SQLBinaryOperator::Arrow | SQLBinaryOperator::LongArrow => match rhs {  // "x -> y", "x ->> y"
                Expr::Literal(LiteralValue::String(path)) => {
                    let mut expr = self.struct_field_access_expr(&lhs, &path, false)?;
                    if let SQLBinaryOperator::LongArrow = op {
                        expr = expr.cast(DataType::String);
                    }
                    expr
                },
                Expr::Literal(LiteralValue::Int(idx)) => {
                    let mut expr = self.struct_field_access_expr(&lhs, &idx.to_string(), true)?;
                    if let SQLBinaryOperator::LongArrow = op {
                        expr = expr.cast(DataType::String);
                    }
                    expr
                },
                _ => {
                    polars_bail!(SQLSyntax: "invalid json/struct path-extract definition: {:?}", right)
                },
            },
            SQLBinaryOperator::HashArrow | SQLBinaryOperator::HashLongArrow => {  // "x #> y", "x #>> y"
                if let Expr::Literal(LiteralValue::String(path)) = rhs {
                    let mut expr = self.struct_field_access_expr(&lhs, &path, true)?;
                    if let SQLBinaryOperator::HashLongArrow = op {
                        expr = expr.cast(DataType::String);
                    }
                    expr
                } else {
                    polars_bail!(SQLSyntax: "invalid json/struct path-extract definition: {:?}", rhs)
                }
            },
            other => {
                polars_bail!(SQLInterface: "operator {:?} is not currently supported", other)
            },
        })
    }

    /// Visit a SQL unary operator.
    ///
    /// e.g. +column or -column
    fn visit_unary_op(&mut self, op: &UnaryOperator, expr: &SQLExpr) -> PolarsResult<Expr> {
        let expr = self.visit_expr(expr)?;
        Ok(match (op, expr.clone()) {
            // simplify the parse tree by special-casing common unary +/- ops
            (UnaryOperator::Plus, Expr::Literal(LiteralValue::Int(n))) => lit(n),
            (UnaryOperator::Plus, Expr::Literal(LiteralValue::Float(n))) => lit(n),
            (UnaryOperator::Minus, Expr::Literal(LiteralValue::Int(n))) => lit(-n),
            (UnaryOperator::Minus, Expr::Literal(LiteralValue::Float(n))) => lit(-n),
            // general case
            (UnaryOperator::Plus, _) => lit(0) + expr,
            (UnaryOperator::Minus, _) => lit(0) - expr,
            (UnaryOperator::Not, _) => expr.not(),
            other => polars_bail!(SQLInterface: "unary operator {:?} is not supported", other),
        })
    }

    /// Visit a SQL function.
    ///
    /// e.g. SUM(column) or COUNT(*)
    ///
    /// See [SQLFunctionVisitor] for more details
    fn visit_function(&mut self, function: &SQLFunction) -> PolarsResult<Expr> {
        let mut visitor = SQLFunctionVisitor {
            func: function,
            ctx: self.ctx,
            active_schema: self.active_schema,
        };
        visitor.visit_function()
    }

    /// Visit a SQL `ALL` expression.
    ///
    /// e.g. `a > ALL(y)`
    fn visit_all(
        &mut self,
        left: &SQLExpr,
        compare_op: &BinaryOperator,
        right: &SQLExpr,
    ) -> PolarsResult<Expr> {
        let left = self.visit_expr(left)?;
        let right = self.visit_expr(right)?;

        match compare_op {
            BinaryOperator::Gt => Ok(left.gt(right.max())),
            BinaryOperator::Lt => Ok(left.lt(right.min())),
            BinaryOperator::GtEq => Ok(left.gt_eq(right.max())),
            BinaryOperator::LtEq => Ok(left.lt_eq(right.min())),
            BinaryOperator::Eq => polars_bail!(SQLSyntax: "ALL cannot be used with ="),
            BinaryOperator::NotEq => polars_bail!(SQLSyntax: "ALL cannot be used with !="),
            _ => polars_bail!(SQLInterface: "invalid comparison operator"),
        }
    }

    /// Visit a SQL `ANY` expression.
    ///
    /// e.g. `a != ANY(y)`
    fn visit_any(
        &mut self,
        left: &SQLExpr,
        compare_op: &BinaryOperator,
        right: &SQLExpr,
    ) -> PolarsResult<Expr> {
        let left = self.visit_expr(left)?;
        let right = self.visit_expr(right)?;

        match compare_op {
            BinaryOperator::Gt => Ok(left.gt(right.min())),
            BinaryOperator::Lt => Ok(left.lt(right.max())),
            BinaryOperator::GtEq => Ok(left.gt_eq(right.min())),
            BinaryOperator::LtEq => Ok(left.lt_eq(right.max())),
            BinaryOperator::Eq => Ok(left.is_in(right)),
            BinaryOperator::NotEq => Ok(left.is_in(right).not()),
            _ => polars_bail!(SQLInterface: "invalid comparison operator"),
        }
    }

    /// Visit a SQL `ARRAY` list (including `IN` values).
    fn visit_array_expr(
        &mut self,
        elements: &[SQLExpr],
        result_as_element: bool,
        dtype_expr_match: Option<&Expr>,
    ) -> PolarsResult<Expr> {
        let mut elems = self.array_expr_to_series(elements)?;

        // handle implicit temporal strings, eg: "dt IN ('2024-04-30','2024-05-01')".
        // (not yet as versatile as the temporal string conversions in visit_binary_op)
        if let (Some(Expr::Column(name)), Some(schema)) =
            (dtype_expr_match, self.active_schema.as_ref())
        {
            if elems.dtype() == &DataType::String {
                if let Some(dtype) = schema.get(name) {
                    if matches!(
                        dtype,
                        DataType::Date | DataType::Time | DataType::Datetime(_, _)
                    ) {
                        elems = elems.strict_cast(dtype)?;
                    }
                }
            }
        }

        // if we are parsing the list as an element in a series, implode.
        // otherwise, return the series as-is.
        let res = if result_as_element {
            elems.implode()?.into_series()
        } else {
            elems
        };
        Ok(lit(res))
    }

    /// Visit a SQL `CAST` or `TRY_CAST` expression.
    ///
    /// e.g. `CAST(col AS INT)`, `col::int4`, or `TRY_CAST(col AS VARCHAR)`,
    fn visit_cast(
        &mut self,
        expr: &SQLExpr,
        dtype: &SQLDataType,
        format: &Option<CastFormat>,
        cast_kind: &CastKind,
    ) -> PolarsResult<Expr> {
        if format.is_some() {
            return Err(
                polars_err!(SQLInterface: "use of FORMAT is not currently supported in CAST"),
            );
        }
        let expr = self.visit_expr(expr)?;

        #[cfg(feature = "json")]
        if dtype == &SQLDataType::JSON {
            return Ok(expr.str().json_decode(None, None));
        }
        let polars_type = map_sql_dtype_to_polars(dtype)?;
        Ok(match cast_kind {
            CastKind::Cast | CastKind::DoubleColon => expr.strict_cast(polars_type),
            CastKind::TryCast | CastKind::SafeCast => expr.cast(polars_type),
        })
    }

    /// Visit a SQL literal.
    ///
    /// e.g. 1, 'foo', 1.0, NULL
    ///
    /// See [SQLValue] and [LiteralValue] for more details
    fn visit_literal(&self, value: &SQLValue) -> PolarsResult<Expr> {
        // note: double-quoted strings will be parsed as identifiers, not literals
        Ok(match value {
            SQLValue::Boolean(b) => lit(*b),
            SQLValue::DollarQuotedString(s) => lit(s.value.clone()),
            #[cfg(feature = "binary_encoding")]
            SQLValue::HexStringLiteral(x) => {
                if x.len() % 2 != 0 {
                    polars_bail!(SQLSyntax: "hex string literal must have an even number of digits; found '{}'", x)
                };
                lit(hex::decode(x.clone()).unwrap())
            },
            SQLValue::Null => Expr::Literal(LiteralValue::Null),
            SQLValue::Number(s, _) => {
                // Check for existence of decimal separator dot
                if s.contains('.') {
                    s.parse::<f64>().map(lit).map_err(|_| ())
                } else {
                    s.parse::<i64>().map(lit).map_err(|_| ())
                }
                .map_err(|_| polars_err!(SQLInterface: "cannot parse literal: {:?}", s))?
            },
            SQLValue::SingleQuotedByteStringLiteral(b) => {
                // note: for PostgreSQL this represents a BIT string literal (eg: b'10101') not a BYTE string
                // literal (see https://www.postgresql.org/docs/current/datatype-bit.html), but sqlparser-rs
                // patterned the token name after BigQuery (where b'str' really IS a byte string)
                bitstring_to_bytes_literal(b)?
            },
            SQLValue::SingleQuotedString(s) => lit(s.clone()),
            other => {
                polars_bail!(SQLInterface: "value {:?} is not a supported literal type", other)
            },
        })
    }

    /// Visit a SQL literal (like [visit_literal]), but return AnyValue instead of Expr.
    fn visit_any_value(
        &self,
        value: &SQLValue,
        op: Option<&UnaryOperator>,
    ) -> PolarsResult<AnyValue> {
        Ok(match value {
            SQLValue::Boolean(b) => AnyValue::Boolean(*b),
            SQLValue::DollarQuotedString(s) => AnyValue::StringOwned(s.clone().value.into()),
            #[cfg(feature = "binary_encoding")]
            SQLValue::HexStringLiteral(x) => {
                if x.len() % 2 != 0 {
                    polars_bail!(SQLSyntax: "hex string literal must have an even number of digits; found '{}'", x)
                };
                AnyValue::BinaryOwned(hex::decode(x.clone()).unwrap())
            },
            SQLValue::Null => AnyValue::Null,
            SQLValue::Number(s, _) => {
                let negate = match op {
                    Some(UnaryOperator::Minus) => true,
                    // no op should be taken as plus.
                    Some(UnaryOperator::Plus) | None => false,
                    Some(op) => {
                        polars_bail!(SQLInterface: "unary op {:?} not supported for numeric SQL value", op)
                    },
                };
                // Check for existence of decimal separator dot
                if s.contains('.') {
                    s.parse::<f64>()
                        .map(|n: f64| AnyValue::Float64(if negate { -n } else { n }))
                        .map_err(|_| ())
                } else {
                    s.parse::<i64>()
                        .map(|n: i64| AnyValue::Int64(if negate { -n } else { n }))
                        .map_err(|_| ())
                }
                .map_err(|_| polars_err!(SQLInterface: "cannot parse literal: {:?}", s))?
            },
            SQLValue::SingleQuotedByteStringLiteral(b) => {
                // note: for PostgreSQL this represents a BIT literal (eg: b'10101') not BYTE
                let bytes_literal = bitstring_to_bytes_literal(b)?;
                match bytes_literal {
                    Expr::Literal(LiteralValue::Binary(v)) => AnyValue::BinaryOwned(v.to_vec()),
                    _ => {
                        polars_bail!(SQLInterface: "failed to parse bitstring literal: {:?}", b)
                    },
                }
            },
            SQLValue::SingleQuotedString(s) => AnyValue::StringOwned(s.as_str().into()),
            other => polars_bail!(SQLInterface: "value {:?} is not currently supported", other),
        })
    }

    /// Visit a SQL `BETWEEN` expression.
    /// See [sqlparser::ast::Expr::Between] for more details
    fn visit_between(
        &mut self,
        expr: &SQLExpr,
        negated: bool,
        low: &SQLExpr,
        high: &SQLExpr,
    ) -> PolarsResult<Expr> {
        let expr = self.visit_expr(expr)?;
        let low = self.visit_expr(low)?;
        let high = self.visit_expr(high)?;

        let low = self.convert_temporal_strings(&expr, &low);
        let high = self.convert_temporal_strings(&expr, &high);
        Ok(if negated {
            expr.clone().lt(low).or(expr.gt(high))
        } else {
            expr.clone().gt_eq(low).and(expr.lt_eq(high))
        })
    }

    /// Visit a SQL `TRIM` function.
    /// See [sqlparser::ast::Expr::Trim] for more details
    fn visit_trim(
        &mut self,
        expr: &SQLExpr,
        trim_where: &Option<TrimWhereField>,
        trim_what: &Option<Box<SQLExpr>>,
        trim_characters: &Option<Vec<SQLExpr>>,
    ) -> PolarsResult<Expr> {
        if trim_characters.is_some() {
            // TODO: allow compact snowflake/bigquery syntax?
            return Err(polars_err!(SQLSyntax: "unsupported TRIM syntax (custom chars)"));
        };
        let expr = self.visit_expr(expr)?;
        let trim_what = trim_what.as_ref().map(|e| self.visit_expr(e)).transpose()?;
        let trim_what = match trim_what {
            Some(Expr::Literal(LiteralValue::String(val))) => Some(val),
            None => None,
            _ => return self.err(&expr),
        };
        Ok(match (trim_where, trim_what) {
            (None | Some(TrimWhereField::Both), None) => expr.str().strip_chars(lit(Null)),
            (None | Some(TrimWhereField::Both), Some(val)) => expr.str().strip_chars(lit(val)),
            (Some(TrimWhereField::Leading), None) => expr.str().strip_chars_start(lit(Null)),
            (Some(TrimWhereField::Leading), Some(val)) => expr.str().strip_chars_start(lit(val)),
            (Some(TrimWhereField::Trailing), None) => expr.str().strip_chars_end(lit(Null)),
            (Some(TrimWhereField::Trailing), Some(val)) => expr.str().strip_chars_end(lit(val)),
        })
    }

    /// Visit a SQL subquery inside and `IN` expression.
    fn visit_in_subquery(
        &mut self,
        expr: &SQLExpr,
        subquery: &Subquery,
        negated: bool,
    ) -> PolarsResult<Expr> {
        let subquery_result = self.visit_subquery(subquery, SubqueryRestriction::SingleColumn)?;
        let expr = self.visit_expr(expr)?;
        Ok(if negated {
            expr.is_in(subquery_result).not()
        } else {
            expr.is_in(subquery_result)
        })
    }

    /// Visit `CASE` control flow expression.
    fn visit_case_when_then(&mut self, expr: &SQLExpr) -> PolarsResult<Expr> {
        if let SQLExpr::Case {
            operand,
            conditions,
            results,
            else_result,
        } = expr
        {
            polars_ensure!(
                conditions.len() == results.len(),
                SQLSyntax: "WHEN and THEN expressions must have the same length"
            );
            polars_ensure!(
                !conditions.is_empty(),
                SQLSyntax: "WHEN and THEN expressions must have at least one element"
            );

            let mut when_thens = conditions.iter().zip(results.iter());
            let first = when_thens.next();
            if first.is_none() {
                polars_bail!(SQLSyntax: "WHEN and THEN expressions must have at least one element");
            }
            let else_res = match else_result {
                Some(else_res) => self.visit_expr(else_res)?,
                None => polars_bail!(SQLSyntax: "ELSE expression is required"),
            };
            if let Some(operand_expr) = operand {
                let first_operand_expr = self.visit_expr(operand_expr)?;

                let first = first.unwrap();
                let first_cond = first_operand_expr.eq(self.visit_expr(first.0)?);
                let first_then = self.visit_expr(first.1)?;
                let expr = when(first_cond).then(first_then);
                let next = when_thens.next();

                let mut when_then = if let Some((cond, res)) = next {
                    let second_operand_expr = self.visit_expr(operand_expr)?;
                    let cond = second_operand_expr.eq(self.visit_expr(cond)?);
                    let res = self.visit_expr(res)?;
                    expr.when(cond).then(res)
                } else {
                    return Ok(expr.otherwise(else_res));
                };
                for (cond, res) in when_thens {
                    let new_operand_expr = self.visit_expr(operand_expr)?;
                    let cond = new_operand_expr.eq(self.visit_expr(cond)?);
                    let res = self.visit_expr(res)?;
                    when_then = when_then.when(cond).then(res);
                }
                return Ok(when_then.otherwise(else_res));
            }

            let first = first.unwrap();
            let first_cond = self.visit_expr(first.0)?;
            let first_then = self.visit_expr(first.1)?;
            let expr = when(first_cond).then(first_then);
            let next = when_thens.next();

            let mut when_then = if let Some((cond, res)) = next {
                let cond = self.visit_expr(cond)?;
                let res = self.visit_expr(res)?;
                expr.when(cond).then(res)
            } else {
                return Ok(expr.otherwise(else_res));
            };
            for (cond, res) in when_thens {
                let cond = self.visit_expr(cond)?;
                let res = self.visit_expr(res)?;
                when_then = when_then.when(cond).then(res);
            }
            Ok(when_then.otherwise(else_res))
        } else {
            unreachable!()
        }
    }

    fn err(&self, expr: &Expr) -> PolarsResult<Expr> {
        polars_bail!(SQLInterface: "expression {:?} is not currently supported", expr);
    }
}

/// parse a SQL expression to a polars expression
/// # Example
/// ```rust
/// # use polars_sql::{SQLContext, sql_expr};
/// # use polars_core::prelude::*;
/// # use polars_lazy::prelude::*;
/// # fn main() {
///
/// let mut ctx = SQLContext::new();
/// let df = df! {
///    "a" =>  [1, 2, 3],
/// }
/// .unwrap();
/// let expr = sql_expr("MAX(a)").unwrap();
/// df.lazy().select(vec![expr]).collect().unwrap();
/// # }
/// ```
pub fn sql_expr<S: AsRef<str>>(s: S) -> PolarsResult<Expr> {
    let mut ctx = SQLContext::new();

    let mut parser = Parser::new(&GenericDialect);
    parser = parser.with_options(ParserOptions {
        trailing_commas: true,
        ..Default::default()
    });

    let mut ast = parser
        .try_with_sql(s.as_ref())
        .map_err(to_sql_interface_err)?;
    let expr = ast.parse_select_item().map_err(to_sql_interface_err)?;

    Ok(match &expr {
        SelectItem::ExprWithAlias { expr, alias } => {
            let expr = parse_sql_expr(expr, &mut ctx, None)?;
            expr.alias(alias.value.as_str())
        },
        SelectItem::UnnamedExpr(expr) => parse_sql_expr(expr, &mut ctx, None)?,
        _ => polars_bail!(SQLInterface: "unable to parse '{}' as Expr", s.as_ref()),
    })
}

pub(crate) fn parse_sql_expr(
    expr: &SQLExpr,
    ctx: &mut SQLContext,
    active_schema: Option<&Schema>,
) -> PolarsResult<Expr> {
    let mut visitor = SQLExprVisitor { ctx, active_schema };
    visitor.visit_expr(expr)
}

pub(crate) fn parse_sql_array(expr: &SQLExpr, ctx: &mut SQLContext) -> PolarsResult<Series> {
    match expr {
        SQLExpr::Array(arr) => {
            let mut visitor = SQLExprVisitor {
                ctx,
                active_schema: None,
            };
            visitor.array_expr_to_series(arr.elem.as_slice())
        },
        _ => polars_bail!(SQLSyntax: "Expected array expression, found {:?}", expr),
    }
}

pub(crate) fn parse_extract_date_part(expr: Expr, field: &DateTimeField) -> PolarsResult<Expr> {
    let field = match field {
        // handle 'DATE_PART' and all valid abbreviations/alternates
        DateTimeField::Custom(Ident { value, .. }) => {
            let value = value.to_ascii_lowercase();
            match value.as_str() {
                "millennium" | "millennia" => &DateTimeField::Millennium,
                "century" | "centuries" => &DateTimeField::Century,
                "decade" | "decades" => &DateTimeField::Decade,
                "isoyear" => &DateTimeField::Isoyear,
                "year" | "years" | "y" => &DateTimeField::Year,
                "quarter" | "quarters" => &DateTimeField::Quarter,
                "month" | "months" | "mon" | "mons" => &DateTimeField::Month,
                "dayofyear" | "doy" => &DateTimeField::DayOfYear,
                "dayofweek" | "dow" => &DateTimeField::DayOfWeek,
                "isoweek" | "week" | "weeks" => &DateTimeField::IsoWeek,
                "isodow" => &DateTimeField::Isodow,
                "day" | "days" | "d" => &DateTimeField::Day,
                "hour" | "hours" | "h" => &DateTimeField::Hour,
                "minute" | "minutes" | "mins" | "min" | "m" => &DateTimeField::Minute,
                "second" | "seconds" | "sec" | "secs" | "s" => &DateTimeField::Second,
                "millisecond" | "milliseconds" | "ms" => &DateTimeField::Millisecond,
                "microsecond" | "microseconds" | "us" => &DateTimeField::Microsecond,
                "nanosecond" | "nanoseconds" | "ns" => &DateTimeField::Nanosecond,
                #[cfg(feature = "timezones")]
                "timezone" => &DateTimeField::Timezone,
                "time" => &DateTimeField::Time,
                "epoch" => &DateTimeField::Epoch,
                _ => {
                    polars_bail!(SQLSyntax: "EXTRACT/DATE_PART does not support '{}' part", value)
                },
            }
        },
        _ => field,
    };
    Ok(match field {
        DateTimeField::Millennium => expr.dt().millennium(),
        DateTimeField::Century => expr.dt().century(),
        DateTimeField::Decade => expr.dt().year() / typed_lit(10i32),
        DateTimeField::Isoyear => expr.dt().iso_year(),
        DateTimeField::Year => expr.dt().year(),
        DateTimeField::Quarter => expr.dt().quarter(),
        DateTimeField::Month => expr.dt().month(),
        DateTimeField::Week(weekday) => {
            if weekday.is_some() {
                polars_bail!(SQLSyntax: "EXTRACT/DATE_PART does not support '{}' part", field)
            }
            expr.dt().week()
        },
        DateTimeField::IsoWeek => expr.dt().week(),
        DateTimeField::DayOfYear | DateTimeField::Doy => expr.dt().ordinal_day(),
        DateTimeField::DayOfWeek | DateTimeField::Dow => {
            let w = expr.dt().weekday();
            when(w.clone().eq(typed_lit(7i8)))
                .then(typed_lit(0i8))
                .otherwise(w)
        },
        DateTimeField::Isodow => expr.dt().weekday(),
        DateTimeField::Day => expr.dt().day(),
        DateTimeField::Hour => expr.dt().hour(),
        DateTimeField::Minute => expr.dt().minute(),
        DateTimeField::Second => expr.dt().second(),
        DateTimeField::Millisecond | DateTimeField::Milliseconds => {
            (expr.clone().dt().second() * typed_lit(1_000f64))
                + expr.dt().nanosecond().div(typed_lit(1_000_000f64))
        },
        DateTimeField::Microsecond | DateTimeField::Microseconds => {
            (expr.clone().dt().second() * typed_lit(1_000_000f64))
                + expr.dt().nanosecond().div(typed_lit(1_000f64))
        },
        DateTimeField::Nanosecond | DateTimeField::Nanoseconds => {
            (expr.clone().dt().second() * typed_lit(1_000_000_000f64)) + expr.dt().nanosecond()
        },
        DateTimeField::Time => expr.dt().time(),
        #[cfg(feature = "timezones")]
        DateTimeField::Timezone => expr.dt().base_utc_offset().dt().total_seconds(),
        DateTimeField::Epoch => {
            expr.clone()
                .dt()
                .timestamp(TimeUnit::Nanoseconds)
                .div(typed_lit(1_000_000_000i64))
                + expr.dt().nanosecond().div(typed_lit(1_000_000_000f64))
        },
        _ => {
            polars_bail!(SQLSyntax: "EXTRACT/DATE_PART does not support '{}' part", field)
        },
    })
}

/// Allow an expression that represents a 1-indexed parameter to
/// be adjusted from 1-indexed (SQL) to 0-indexed (Rust/Polars)
pub(crate) fn adjust_one_indexed_param(idx: Expr, null_if_zero: bool) -> Expr {
    match idx {
        Expr::Literal(Null) => lit(Null),
        Expr::Literal(LiteralValue::Int(0)) => {
            if null_if_zero {
                lit(Null)
            } else {
                idx
            }
        },
        Expr::Literal(LiteralValue::Int(n)) if n < 0 => idx,
        Expr::Literal(LiteralValue::Int(n)) => lit(n - 1),
        // TODO: when 'saturating_sub' is available, should be able
        //  to streamline the when/then/otherwise block below -
        _ => when(idx.clone().gt(lit(0)))
            .then(idx.clone() - lit(1))
            .otherwise(if null_if_zero {
                when(idx.clone().eq(lit(0)))
                    .then(lit(Null))
                    .otherwise(idx.clone())
            } else {
                idx.clone()
            }),
    }
}

pub(crate) fn resolve_compound_identifier(
    ctx: &mut SQLContext,
    idents: &[Ident],
    active_schema: Option<&Schema>,
) -> PolarsResult<Vec<Expr>> {
    // inference priority: table > struct > column
    let ident_root = &idents[0];
    let mut remaining_idents = idents.iter().skip(1);
    let mut lf = ctx.get_table_from_current_scope(&ident_root.value);

    let schema = if let Some(ref mut lf) = lf {
        lf.schema_with_arenas(&mut ctx.lp_arena, &mut ctx.expr_arena)
    } else {
        Ok(Arc::new(if let Some(active_schema) = active_schema {
            active_schema.clone()
        } else {
            Schema::default()
        }))
    }?;

    let col_dtype: PolarsResult<(Expr, Option<&DataType>)> = if lf.is_none() && schema.is_empty() {
        Ok((col(ident_root.value.as_str()), None))
    } else {
        let name = &remaining_idents.next().unwrap().value;
        if lf.is_some() && name == "*" {
            return Ok(schema
                .iter_names()
                .map(|name| col(name.clone()))
                .collect::<Vec<_>>());
        } else if let Some((_, name, dtype)) = schema.get_full(name) {
            let resolved = ctx.resolve_name(&ident_root.value, name);
            let resolved = resolved.as_str();
            Ok((
                if name != resolved {
                    col(resolved).alias(name.clone())
                } else {
                    col(name.clone())
                },
                Some(dtype),
            ))
        } else if lf.is_none() {
            remaining_idents = idents.iter().skip(1);
            Ok((
                col(ident_root.value.as_str()),
                schema.get(&ident_root.value),
            ))
        } else {
            polars_bail!(
                SQLInterface: "no column named '{}' found in table '{}'",
                name,
                ident_root
            )
        }
    };

    // additional ident levels index into struct fields
    let (mut column, mut dtype) = col_dtype?;
    for ident in remaining_idents {
        let name = ident.value.as_str();
        match dtype {
            Some(DataType::Struct(fields)) if name == "*" => {
                return Ok(fields
                    .iter()
                    .map(|fld| column.clone().struct_().field_by_name(&fld.name))
                    .collect())
            },
            Some(DataType::Struct(fields)) => {
                dtype = fields
                    .iter()
                    .find(|fld| fld.name == name)
                    .map(|fld| &fld.dtype);
            },
            Some(dtype) if name == "*" => {
                polars_bail!(SQLSyntax: "cannot expand '*' on non-Struct dtype; found {:?}", dtype)
            },
            _ => {
                dtype = None;
            },
        }
        column = column.struct_().field_by_name(name);
    }
    Ok(vec![column])
}