polars_time/windows/window.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
use arrow::legacy::time_zone::Tz;
use arrow::temporal_conversions::*;
use chrono::NaiveDateTime;
#[cfg(feature = "timezones")]
use chrono::TimeZone;
use now::DateTimeNow;
use polars_core::prelude::*;
use crate::prelude::*;
/// Ensure that earliest datapoint (`t`) is in, or in front of, first window.
///
/// For example, if we have:
///
/// - first datapoint is `2020-01-01 01:00`
/// - `every` is `'1d'`
/// - `period` is `'2d'`
/// - `offset` is `'6h'`
///
/// then truncating the earliest datapoint by `every` and adding `offset` results
/// in the window `[2020-01-01 06:00, 2020-01-03 06:00)`. To give the earliest datapoint
/// a chance of being included, we then shift the window back by `every` to
/// `[2019-12-31 06:00, 2020-01-02 06:00)`.
pub(crate) fn ensure_t_in_or_in_front_of_window(
mut every: Duration,
t: i64,
offset_fn: fn(&Duration, i64, Option<&Tz>) -> PolarsResult<i64>,
period: Duration,
mut start: i64,
closed_window: ClosedWindow,
tz: Option<&Tz>,
) -> PolarsResult<Bounds> {
every.negative = !every.negative;
let mut stop = offset_fn(&period, start, tz)?;
while Bounds::new(start, stop).is_past(t, closed_window) {
start = offset_fn(&every, start, tz)?;
stop = offset_fn(&period, start, tz)?;
}
Ok(Bounds::new_checked(start, stop))
}
/// Represents a window in time
#[derive(Copy, Clone)]
pub struct Window {
// The ith window start is expressed via this equation:
// window_start_i = zero + every * i
// window_stop_i = zero + every * i + period
every: Duration,
period: Duration,
pub offset: Duration,
}
impl Window {
pub fn new(every: Duration, period: Duration, offset: Duration) -> Self {
debug_assert!(!every.negative);
Self {
every,
period,
offset,
}
}
/// Truncate the given ns timestamp by the window boundary.
pub fn truncate_ns(&self, t: i64, tz: Option<&Tz>) -> PolarsResult<i64> {
self.every.truncate_ns(t, tz)
}
/// Truncate the given us timestamp by the window boundary.
pub fn truncate_us(&self, t: i64, tz: Option<&Tz>) -> PolarsResult<i64> {
self.every.truncate_us(t, tz)
}
/// Truncate the given ms timestamp by the window boundary.
pub fn truncate_ms(&self, t: i64, tz: Option<&Tz>) -> PolarsResult<i64> {
self.every.truncate_ms(t, tz)
}
/// Round the given ns timestamp by the window boundary.
pub fn round_ns(&self, t: i64, tz: Option<&Tz>) -> PolarsResult<i64> {
let t = t + self.every.duration_ns() / 2_i64;
self.truncate_ns(t, tz)
}
/// Round the given us timestamp by the window boundary.
pub fn round_us(&self, t: i64, tz: Option<&Tz>) -> PolarsResult<i64> {
let t = t + self.every.duration_ns()
/ (2 * timeunit_scale(ArrowTimeUnit::Nanosecond, ArrowTimeUnit::Microsecond) as i64);
self.truncate_us(t, tz)
}
/// Round the given ms timestamp by the window boundary.
pub fn round_ms(&self, t: i64, tz: Option<&Tz>) -> PolarsResult<i64> {
let t = t + self.every.duration_ns()
/ (2 * timeunit_scale(ArrowTimeUnit::Nanosecond, ArrowTimeUnit::Millisecond) as i64);
self.truncate_ms(t, tz)
}
/// returns the bounds for the earliest window bounds
/// that contains the given time t. For underlapping windows that
/// do not contain time t, the window directly after time t will be returned.
pub fn get_earliest_bounds_ns(
&self,
t: i64,
closed_window: ClosedWindow,
tz: Option<&Tz>,
) -> PolarsResult<Bounds> {
let start = self.truncate_ns(t, tz)?;
let start = self.offset.add_ns(start, tz)?;
ensure_t_in_or_in_front_of_window(
self.every,
t,
Duration::add_ns,
self.period,
start,
closed_window,
tz,
)
}
pub fn get_earliest_bounds_us(
&self,
t: i64,
closed_window: ClosedWindow,
tz: Option<&Tz>,
) -> PolarsResult<Bounds> {
let start = self.truncate_us(t, tz)?;
let start = self.offset.add_us(start, tz)?;
ensure_t_in_or_in_front_of_window(
self.every,
t,
Duration::add_us,
self.period,
start,
closed_window,
tz,
)
}
pub fn get_earliest_bounds_ms(
&self,
t: i64,
closed_window: ClosedWindow,
tz: Option<&Tz>,
) -> PolarsResult<Bounds> {
let start = self.truncate_ms(t, tz)?;
let start = self.offset.add_ms(start, tz)?;
ensure_t_in_or_in_front_of_window(
self.every,
t,
Duration::add_ms,
self.period,
start,
closed_window,
tz,
)
}
pub(crate) fn estimate_overlapping_bounds_ns(&self, boundary: Bounds) -> usize {
(boundary.duration() / self.every.duration_ns()
+ self.period.duration_ns() / self.every.duration_ns()) as usize
}
pub(crate) fn estimate_overlapping_bounds_us(&self, boundary: Bounds) -> usize {
(boundary.duration() / self.every.duration_us()
+ self.period.duration_us() / self.every.duration_us()) as usize
}
pub(crate) fn estimate_overlapping_bounds_ms(&self, boundary: Bounds) -> usize {
(boundary.duration() / self.every.duration_ms()
+ self.period.duration_ms() / self.every.duration_ms()) as usize
}
pub fn get_overlapping_bounds_iter<'a>(
&'a self,
boundary: Bounds,
closed_window: ClosedWindow,
tu: TimeUnit,
tz: Option<&'a Tz>,
start_by: StartBy,
) -> PolarsResult<BoundsIter<'a>> {
BoundsIter::new(*self, closed_window, boundary, tu, tz, start_by)
}
}
pub struct BoundsIter<'a> {
window: Window,
// wrapping boundary
boundary: Bounds,
// boundary per window iterator
bi: Bounds,
tu: TimeUnit,
tz: Option<&'a Tz>,
}
impl<'a> BoundsIter<'a> {
fn new(
window: Window,
closed_window: ClosedWindow,
boundary: Bounds,
tu: TimeUnit,
tz: Option<&'a Tz>,
start_by: StartBy,
) -> PolarsResult<Self> {
let bi = match start_by {
StartBy::DataPoint => {
let mut boundary = boundary;
let offset_fn = match tu {
TimeUnit::Nanoseconds => Duration::add_ns,
TimeUnit::Microseconds => Duration::add_us,
TimeUnit::Milliseconds => Duration::add_ms,
};
boundary.stop = offset_fn(&window.period, boundary.start, tz)?;
boundary
},
StartBy::WindowBound => match tu {
TimeUnit::Nanoseconds => {
window.get_earliest_bounds_ns(boundary.start, closed_window, tz)?
},
TimeUnit::Microseconds => {
window.get_earliest_bounds_us(boundary.start, closed_window, tz)?
},
TimeUnit::Milliseconds => {
window.get_earliest_bounds_ms(boundary.start, closed_window, tz)?
},
},
_ => {
{
#[allow(clippy::type_complexity)]
let (from, to, offset_fn): (
fn(i64) -> NaiveDateTime,
fn(NaiveDateTime) -> i64,
fn(&Duration, i64, Option<&Tz>) -> PolarsResult<i64>,
) = match tu {
TimeUnit::Nanoseconds => (
timestamp_ns_to_datetime,
datetime_to_timestamp_ns,
Duration::add_ns,
),
TimeUnit::Microseconds => (
timestamp_us_to_datetime,
datetime_to_timestamp_us,
Duration::add_us,
),
TimeUnit::Milliseconds => (
timestamp_ms_to_datetime,
datetime_to_timestamp_ms,
Duration::add_ms,
),
};
// find beginning of the week.
let dt = from(boundary.start);
match tz {
#[cfg(feature = "timezones")]
Some(tz) => {
let dt = tz.from_utc_datetime(&dt);
let dt = dt.beginning_of_week();
let dt = dt.naive_utc();
let start = to(dt);
// adjust start of the week based on given day of the week
let start = offset_fn(
&Duration::parse(&format!("{}d", start_by.weekday().unwrap())),
start,
Some(tz),
)?;
// apply the 'offset'
let start = offset_fn(&window.offset, start, Some(tz))?;
// make sure the first datapoint has a chance to be included
// and compute the end of the window defined by the 'period'
ensure_t_in_or_in_front_of_window(
window.every,
boundary.start,
offset_fn,
window.period,
start,
closed_window,
Some(tz),
)?
},
_ => {
let tz = chrono::Utc;
let dt = dt.and_local_timezone(tz).unwrap();
let dt = dt.beginning_of_week();
let dt = dt.naive_utc();
let start = to(dt);
// adjust start of the week based on given day of the week
let start = offset_fn(
&Duration::parse(&format!("{}d", start_by.weekday().unwrap())),
start,
None,
)
.unwrap();
// apply the 'offset'
let start = offset_fn(&window.offset, start, None).unwrap();
// make sure the first datapoint has a chance to be included
// and compute the end of the window defined by the 'period'
ensure_t_in_or_in_front_of_window(
window.every,
boundary.start,
offset_fn,
window.period,
start,
closed_window,
None,
)?
},
}
}
},
};
Ok(Self {
window,
boundary,
bi,
tu,
tz,
})
}
}
impl Iterator for BoundsIter<'_> {
type Item = Bounds;
fn next(&mut self) -> Option<Self::Item> {
if self.bi.start < self.boundary.stop {
let out = self.bi;
match self.tu {
// TODO: find some way to propagate error instead of unwrapping?
// Issue is that `next` needs to return `Option`.
TimeUnit::Nanoseconds => {
self.bi.start = self.window.every.add_ns(self.bi.start, self.tz).unwrap();
self.bi.stop = self.window.every.add_ns(self.bi.stop, self.tz).unwrap();
},
TimeUnit::Microseconds => {
self.bi.start = self.window.every.add_us(self.bi.start, self.tz).unwrap();
self.bi.stop = self.window.every.add_us(self.bi.stop, self.tz).unwrap();
},
TimeUnit::Milliseconds => {
self.bi.start = self.window.every.add_ms(self.bi.start, self.tz).unwrap();
self.bi.stop = self.window.every.add_ms(self.bi.stop, self.tz).unwrap();
},
}
Some(out)
} else {
None
}
}
}