1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
use crate::collections::VecDeque;
use crate::helper::{
    get_peak_map, get_peaks, is_descendant_pos, leaf_index_to_pos, parent_offset,
    pos_height_in_tree, sibling_offset,
};
use crate::vec::Vec;
use crate::{Error, Merge, Result};
use core::fmt::Debug;
use core::marker::PhantomData;
use itertools::Itertools;

#[derive(Debug)]
pub struct NodeMerkleProof<T, M> {
    mmr_size: u64,
    proof: Vec<(u64, T)>,
    merge: PhantomData<M>,
}

#[derive(Debug)]
pub struct AncestryProof<T, M> {
    pub prev_peaks: Vec<T>,
    pub prev_size: u64,
    pub proof: NodeMerkleProof<T, M>,
}

impl<T: PartialEq + Debug + Clone, M: Merge<Item = T>> AncestryProof<T, M> {
    // TODO: restrict roots to be T::Node
    pub fn verify_ancestor(&self, root: T, prev_root: T) -> Result<bool> {
        let current_leaves_count = get_peak_map(self.proof.mmr_size);
        if current_leaves_count <= self.prev_peaks.len() as u64 {
            return Err(Error::CorruptedProof);
        }
        // Test if previous root is correct.
        let prev_peaks_positions = {
            let prev_peaks_positions = get_peaks(self.prev_size);
            if prev_peaks_positions.len() != self.prev_peaks.len() {
                return Err(Error::CorruptedProof);
            }
            prev_peaks_positions
        };

        let calculated_prev_root = bagging_peaks_hashes::<T, M>(self.prev_peaks.clone())?;
        if calculated_prev_root != prev_root {
            return Ok(false);
        }

        let nodes = self
            .prev_peaks
            .clone()
            .into_iter()
            .zip(prev_peaks_positions.iter())
            .map(|(peak, position)| (*position, peak))
            .collect();

        self.proof.verify(root, nodes)
    }
}

impl<T: Clone + PartialEq, M: Merge<Item = T>> NodeMerkleProof<T, M> {
    pub fn new(mmr_size: u64, proof: Vec<(u64, T)>) -> Self {
        NodeMerkleProof {
            mmr_size,
            proof,
            merge: PhantomData,
        }
    }

    pub fn mmr_size(&self) -> u64 {
        self.mmr_size
    }

    pub fn proof_items(&self) -> &[(u64, T)] {
        &self.proof
    }

    pub fn calculate_root(&self, leaves: Vec<(u64, T)>) -> Result<T> {
        calculate_root::<_, M, _>(leaves, self.mmr_size, self.proof.iter())
    }

    /// from merkle proof of leaf n to calculate merkle root of n + 1 leaves.
    /// by observe the MMR construction graph we know it is possible.
    /// https://github.com/jjyr/merkle-mountain-range#construct
    pub fn calculate_root_with_new_leaf(
        &self,
        mut nodes: Vec<(u64, T)>,
        new_pos: u64,
        new_elem: T,
        new_mmr_size: u64,
    ) -> Result<T> {
        nodes.push((new_pos, new_elem));
        calculate_root::<_, M, _>(nodes, new_mmr_size, self.proof.iter())
    }

    pub fn verify(&self, root: T, nodes: Vec<(u64, T)>) -> Result<bool> {
        let calculated_root = self.calculate_root(nodes)?;
        Ok(calculated_root == root)
    }

    /// Verifies a old root and all incremental leaves.
    ///
    /// If this method returns `true`, it means the following assertion are true:
    /// - The old root could be generated in the history of the current MMR.
    /// - All incremental leaves are on the current MMR.
    /// - The MMR, which could generate the old root, appends all incremental leaves, becomes the
    ///   current MMR.
    pub fn verify_incremental(&self, root: T, prev_root: T, incremental: Vec<T>) -> Result<bool> {
        let current_leaves_count = get_peak_map(self.mmr_size);
        if current_leaves_count <= incremental.len() as u64 {
            return Err(Error::CorruptedProof);
        }
        // Test if previous root is correct.
        let prev_leaves_count = current_leaves_count - incremental.len() as u64;

        let prev_peaks: Vec<_> = self
            .proof_items()
            .iter()
            .map(|(_, item)| item.clone())
            .collect();

        let calculated_prev_root = bagging_peaks_hashes::<T, M>(prev_peaks)?;
        if calculated_prev_root != prev_root {
            return Ok(false);
        }

        // Test if incremental leaves are correct.
        let leaves = incremental
            .into_iter()
            .enumerate()
            .map(|(index, leaf)| {
                let pos = leaf_index_to_pos(prev_leaves_count + index as u64);
                (pos, leaf)
            })
            .collect();
        self.verify(root, leaves)
    }
}

fn calculate_peak_root<
    'a,
    T: 'a + PartialEq,
    M: Merge<Item = T>,
    // I: Iterator<Item = &'a T>
>(
    nodes: Vec<(u64, T)>,
    peak_pos: u64,
    // proof_iter: &mut I,
) -> Result<T> {
    debug_assert!(!nodes.is_empty(), "can't be empty");
    // (position, hash, height)

    let mut queue: VecDeque<_> = nodes
        .into_iter()
        .map(|(pos, item)| (pos, item, pos_height_in_tree(pos)))
        .collect();

    let mut sibs_processed_from_back = Vec::new();

    // calculate tree root from each items
    while let Some((pos, item, height)) = queue.pop_front() {
        if pos == peak_pos {
            if queue.is_empty() {
                // return root once queue is consumed
                return Ok(item);
            }
            if queue
                .iter()
                .any(|entry| entry.0 == peak_pos && entry.1 != item)
            {
                return Err(Error::CorruptedProof);
            }
            if queue
                .iter()
                .all(|entry| entry.0 == peak_pos && &entry.1 == &item && entry.2 == height)
            {
                // return root if remaining queue consists only of duplicate root entries
                return Ok(item);
            }
            // if queue not empty, push peak back to the end
            queue.push_back((pos, item, height));
            continue;
        }
        // calculate sibling
        let next_height = pos_height_in_tree(pos + 1);
        let (parent_pos, parent_item) = {
            let sibling_offset = sibling_offset(height);
            if next_height > height {
                // implies pos is right sibling
                let (sib_pos, parent_pos) = (pos - sibling_offset, pos + 1);
                let parent_item = if Some(&sib_pos) == queue.front().map(|(pos, _, _)| pos) {
                    let sibling_item = queue.pop_front().map(|(_, item, _)| item).unwrap();
                    M::merge(&sibling_item, &item)?
                } else if Some(&sib_pos) == queue.back().map(|(pos, _, _)| pos) {
                    let sibling_item = queue.pop_back().map(|(_, item, _)| item).unwrap();
                    M::merge(&sibling_item, &item)?
                }
                // handle special if next queue item is descendant of sibling
                else if let Some(&(front_pos, ..)) = queue.front() {
                    if height > 0 && is_descendant_pos(sib_pos, front_pos) {
                        queue.push_back((pos, item, height));
                        continue;
                    } else {
                        return Err(Error::CorruptedProof);
                    }
                } else {
                    return Err(Error::CorruptedProof);
                };
                (parent_pos, parent_item)
            } else {
                // pos is left sibling
                let (sib_pos, parent_pos) = (pos + sibling_offset, pos + parent_offset(height));
                let parent_item = if Some(&sib_pos) == queue.front().map(|(pos, _, _)| pos) {
                    let sibling_item = queue.pop_front().map(|(_, item, _)| item).unwrap();
                    M::merge(&item, &sibling_item)?
                } else if Some(&sib_pos) == queue.back().map(|(pos, _, _)| pos) {
                    let sibling_item = queue.pop_back().map(|(_, item, _)| item).unwrap();
                    let parent = M::merge(&item, &sibling_item)?;
                    sibs_processed_from_back.push((sib_pos, sibling_item, height));
                    parent
                } else if let Some(&(front_pos, ..)) = queue.front() {
                    if height > 0 && is_descendant_pos(sib_pos, front_pos) {
                        queue.push_back((pos, item, height));
                        continue;
                    } else {
                        return Err(Error::CorruptedProof);
                    }
                } else {
                    return Err(Error::CorruptedProof);
                };
                (parent_pos, parent_item)
            }
        };

        if parent_pos <= peak_pos {
            let parent = (parent_pos, parent_item, height + 1);
            if peak_pos == parent_pos
                || queue.front() != Some(&parent)
                    && !sibs_processed_from_back.iter().any(|item| item == &parent)
            {
                queue.push_front(parent)
            };
        } else {
            return Err(Error::CorruptedProof);
        }
    }
    Err(Error::CorruptedProof)
}

fn calculate_peaks_hashes<
    'a,
    T: 'a + PartialEq + Clone,
    M: Merge<Item = T>,
    I: Iterator<Item = &'a (u64, T)>,
>(
    nodes: Vec<(u64, T)>,
    mmr_size: u64,
    proof_iter: I,
) -> Result<Vec<T>> {
    // special handle the only 1 leaf MMR
    if mmr_size == 1 && nodes.len() == 1 && nodes[0].0 == 0 {
        return Ok(nodes.into_iter().map(|(_pos, item)| item).collect());
    }

    // ensure nodes are sorted and unique
    let mut nodes: Vec<_> = nodes
        .into_iter()
        .chain(proof_iter.cloned())
        .sorted_by_key(|(pos, _)| *pos)
        .dedup_by(|a, b| a.0 == b.0)
        .collect();

    let peaks = get_peaks(mmr_size);

    let mut peaks_hashes: Vec<T> = Vec::with_capacity(peaks.len() + 1);
    for peak_pos in peaks {
        let mut nodes: Vec<(u64, T)> = take_while_vec(&mut nodes, |(pos, _)| *pos <= peak_pos);
        let peak_root = if nodes.len() == 1 && nodes[0].0 == peak_pos {
            // leaf is the peak
            nodes.remove(0).1
        } else if nodes.is_empty() {
            // if empty, means the next proof is a peak root or rhs bagged root
            // means that either all right peaks are bagged, or proof is corrupted
            // so we break loop and check no items left
            break;
        } else {
            calculate_peak_root::<_, M>(nodes, peak_pos)?
        };
        peaks_hashes.push(peak_root.clone());
    }

    // ensure nothing left in leaves
    if nodes.len() != 0 {
        return Err(Error::CorruptedProof);
    }

    // check rhs peaks
    // if let Some((_, rhs_peaks_hashes)) = proof_iter.next() {
    //     peaks_hashes.push(rhs_peaks_hashes.clone());
    // }
    // ensure nothing left in proof_iter
    // if proof_iter.next().is_some() {
    //     return Err(Error::CorruptedProof);
    // }
    Ok(peaks_hashes)
}

pub fn bagging_peaks_hashes<T, M: Merge<Item = T>>(mut peaks_hashes: Vec<T>) -> Result<T> {
    // bagging peaks
    // bagging from right to left via hash(right, left).
    while peaks_hashes.len() > 1 {
        let right_peak = peaks_hashes.pop().expect("pop");
        let left_peak = peaks_hashes.pop().expect("pop");
        peaks_hashes.push(M::merge_peaks(&right_peak, &left_peak)?);
    }
    peaks_hashes.pop().ok_or(Error::CorruptedProof)
}

/// merkle proof
/// 1. sort items by position
/// 2. calculate root of each peak
/// 3. bagging peaks
fn calculate_root<
    'a,
    T: 'a + PartialEq + Clone,
    M: Merge<Item = T>,
    I: Iterator<Item = &'a (u64, T)>,
>(
    nodes: Vec<(u64, T)>,
    mmr_size: u64,
    proof_iter: I,
) -> Result<T> {
    let peaks_hashes = calculate_peaks_hashes::<_, M, _>(nodes, mmr_size, proof_iter)?;
    bagging_peaks_hashes::<_, M>(peaks_hashes)
}

fn take_while_vec<T, P: Fn(&T) -> bool>(v: &mut Vec<T>, p: P) -> Vec<T> {
    for i in 0..v.len() {
        if !p(&v[i]) {
            return v.drain(..i).collect();
        }
    }
    v.drain(..).collect()
}