1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
//! Merkle Mountain Range
//!
//! references:
//! https://github.com/mimblewimble/grin/blob/master/doc/mmr.md#structure
//! https://github.com/mimblewimble/grin/blob/0ff6763ee64e5a14e70ddd4642b99789a1648a32/core/src/core/pmmr.rs#L606

use crate::ancestry_proof::{AncestryProof, NodeMerkleProof};
use crate::borrow::Cow;
use crate::collections::VecDeque;
use crate::helper::{
    get_peak_map, get_peaks, is_descendant_pos, leaf_index_to_mmr_size, leaf_index_to_pos,
    parent_offset, pos_height_in_tree, sibling_offset,
};
use crate::mmr_store::{MMRBatch, MMRStoreReadOps, MMRStoreWriteOps};
use crate::vec;
use crate::vec::Vec;
use crate::{Error, Merge, Result};
use core::fmt::Debug;
use core::marker::PhantomData;

#[allow(clippy::upper_case_acronyms)]
pub struct MMR<T, M, S> {
    mmr_size: u64,
    batch: MMRBatch<T, S>,
    merge: PhantomData<M>,
}

impl<T, M, S> MMR<T, M, S> {
    pub fn new(mmr_size: u64, store: S) -> Self {
        MMR {
            mmr_size,
            batch: MMRBatch::new(store),
            merge: PhantomData,
        }
    }

    pub fn mmr_size(&self) -> u64 {
        self.mmr_size
    }

    pub fn is_empty(&self) -> bool {
        self.mmr_size == 0
    }

    pub fn batch(&self) -> &MMRBatch<T, S> {
        &self.batch
    }

    pub fn store(&self) -> &S {
        self.batch.store()
    }
}

impl<T: Clone + PartialEq, M: Merge<Item = T>, S: MMRStoreReadOps<T>> MMR<T, M, S> {
    // find internal MMR elem, the pos must exists, otherwise a error will return
    fn find_elem<'b>(&self, pos: u64, hashes: &'b [T]) -> Result<Cow<'b, T>> {
        let pos_offset = pos.checked_sub(self.mmr_size);
        if let Some(elem) = pos_offset.and_then(|i| hashes.get(i as usize)) {
            return Ok(Cow::Borrowed(elem));
        }
        let elem = self.batch.get_elem(pos)?.ok_or(Error::InconsistentStore)?;
        Ok(Cow::Owned(elem))
    }

    // push a element and return position
    pub fn push(&mut self, elem: T) -> Result<u64> {
        let mut elems = vec![elem];
        let elem_pos = self.mmr_size;
        let peak_map = get_peak_map(self.mmr_size);
        let mut pos = self.mmr_size;
        let mut peak = 1;
        while (peak_map & peak) != 0 {
            peak <<= 1;
            pos += 1;
            let left_pos = pos - peak;
            let left_elem = self.find_elem(left_pos, &elems)?;
            let right_elem = elems.last().expect("checked");
            let parent_elem = M::merge(&left_elem, right_elem)?;
            elems.push(parent_elem);
        }
        // store hashes
        self.batch.append(elem_pos, elems);
        // update mmr_size
        self.mmr_size = pos + 1;
        Ok(elem_pos)
    }

    /// get_root
    pub fn get_root(&self) -> Result<T> {
        if self.mmr_size == 0 {
            return Err(Error::GetRootOnEmpty);
        } else if self.mmr_size == 1 {
            return self.batch.get_elem(0)?.ok_or(Error::InconsistentStore);
        }
        let peaks: Vec<T> = get_peaks(self.mmr_size)
            .into_iter()
            .map(|peak_pos| {
                self.batch
                    .get_elem(peak_pos)
                    .and_then(|elem| elem.ok_or(Error::InconsistentStore))
            })
            .collect::<Result<Vec<T>>>()?;
        self.bag_rhs_peaks(peaks)?.ok_or(Error::InconsistentStore)
    }

    /// get_ancestor_root
    pub fn get_ancestor_peaks_and_root(&self, prev_mmr_size: u64) -> Result<(Vec<T>, T)> {
        if self.mmr_size == 0 {
            return Err(Error::GetRootOnEmpty);
        } else if self.mmr_size == 1 && prev_mmr_size == 1 {
            let singleton = self.batch.get_elem(0)?.ok_or(Error::InconsistentStore);
            match singleton {
                Ok(singleton) => return Ok((vec![singleton.clone()], singleton)),
                Err(e) => return Err(e),
            }
        } else if prev_mmr_size > self.mmr_size {
            return Err(Error::AncestorRootNotPredecessor);
        }
        let peaks: Result<Vec<T>> = get_peaks(prev_mmr_size)
            .into_iter()
            .map(|peak_pos| {
                self.batch
                    .get_elem(peak_pos)
                    .and_then(|elem| elem.ok_or(Error::InconsistentStore))
            })
            .collect::<Result<Vec<T>>>();
        match peaks {
            Ok(peaks) => {
                let root = self
                    .bag_rhs_peaks(peaks.clone())?
                    .ok_or(Error::InconsistentStore)?;
                return Ok((peaks, root));
            }
            Err(e) => Err(e),
        }
    }

    fn bag_rhs_peaks(&self, mut rhs_peaks: Vec<T>) -> Result<Option<T>> {
        while rhs_peaks.len() > 1 {
            let right_peak = rhs_peaks.pop().expect("pop");
            let left_peak = rhs_peaks.pop().expect("pop");
            rhs_peaks.push(M::merge_peaks(&right_peak, &left_peak)?);
        }
        Ok(rhs_peaks.pop())
    }

    /// generate merkle proof for a peak
    /// the pos_list must be sorted, otherwise the behaviour is undefined
    ///
    /// 1. find a lower tree in peak that can generate a complete merkle proof for position
    /// 2. find that tree by compare positions
    /// 3. generate proof for each positions
    fn gen_proof_for_peak(
        &self,
        proof: &mut Vec<T>,
        pos_list: Vec<u64>,
        peak_pos: u64,
    ) -> Result<()> {
        // do nothing if position itself is the peak
        if pos_list.len() == 1 && pos_list == [peak_pos] {
            return Ok(());
        }
        // take peak root from store if no positions need to be proof
        if pos_list.is_empty() {
            proof.push(
                self.batch
                    .get_elem(peak_pos)?
                    .ok_or(Error::InconsistentStore)?,
            );
            return Ok(());
        }

        let mut queue: VecDeque<_> = pos_list.into_iter().map(|pos| (pos, 0)).collect();

        // Generate sub-tree merkle proof for positions
        while let Some((pos, height)) = queue.pop_front() {
            debug_assert!(pos <= peak_pos);
            if pos == peak_pos {
                if queue.is_empty() {
                    break;
                } else {
                    return Err(Error::CorruptedProof);
                }
            }

            // calculate sibling
            let (sib_pos, parent_pos) = {
                let next_height = pos_height_in_tree(pos + 1);
                let sibling_offset = sibling_offset(height);
                if next_height > height {
                    // implies pos is right sibling
                    (pos - sibling_offset, pos + 1)
                } else {
                    // pos is left sibling
                    (pos + sibling_offset, pos + parent_offset(height))
                }
            };

            if Some(&sib_pos) == queue.front().map(|(pos, _)| pos) {
                // drop sibling
                queue.pop_front();
            } else {
                proof.push(
                    self.batch
                        .get_elem(sib_pos)?
                        .ok_or(Error::InconsistentStore)?,
                );
            }
            if parent_pos < peak_pos {
                // save pos to tree buf
                queue.push_back((parent_pos, height + 1));
            }
        }
        Ok(())
    }

    /// generate node merkle proof for a peak
    /// the pos_list must be sorted, otherwise the behaviour is undefined
    ///
    /// 1. find a lower tree in peak that can generate a complete merkle proof for position
    /// 2. find that tree by compare positions
    /// 3. generate proof for each positions
    fn gen_node_proof_for_peak(
        &self,
        proof: &mut Vec<(u64, T)>,
        pos_list: Vec<u64>,
        peak_pos: u64,
    ) -> Result<()> {
        // do nothing if position itself is the peak
        if pos_list.len() == 1 && pos_list == [peak_pos] {
            return Ok(());
        }
        // take peak root from store if no positions need to be proven
        if pos_list.is_empty() {
            proof.push((
                peak_pos,
                self.batch
                    .get_elem(peak_pos)?
                    .ok_or(Error::InconsistentStore)?,
            ));
            return Ok(());
        }

        let mut queue: VecDeque<_> = pos_list
            .clone()
            .into_iter()
            .map(|pos| (pos, pos_height_in_tree(pos)))
            .collect();

        // Generate sub-tree merkle proof for positions
        while let Some((pos, height)) = queue.pop_front() {
            debug_assert!(pos <= peak_pos);
            if pos == peak_pos {
                if queue.is_empty() {
                    break;
                } else {
                    continue;
                }
            }

            // calculate sibling
            let (sib_pos, parent_pos) = {
                let next_height = pos_height_in_tree(pos + 1);
                let sibling_offset = sibling_offset(height);
                if next_height > height {
                    // implies pos is right sibling
                    (pos - sibling_offset, pos + 1)
                } else {
                    // pos is left sibling
                    (pos + sibling_offset, pos + parent_offset(height))
                }
            };

            let queue_front_pos = queue.front().map(|(pos, _)| pos);
            if Some(&sib_pos) == queue_front_pos {
                // drop sibling
                queue.pop_front();
            } else if queue_front_pos.is_none()
                || !is_descendant_pos(
                    sib_pos,
                    *queue_front_pos.expect("checked queue_front_pos != None"),
                )
            // only push a sibling into the proof if either of these cases is satisfied:
            // 1. the queue is empty
            // 2. the next item in the queue is not the sibling or a child of it
            {
                let sibling = (
                    sib_pos,
                    self.batch
                        .get_elem(sib_pos.clone())?
                        .ok_or(Error::InconsistentStore)?,
                );

                // only push sibling if it's not already a proof item or to be proven,
                // which can be the case if both a child and its parent are to be proven
                if height == 0
                    || !(proof.contains(&sibling)) && pos_list.binary_search(&sib_pos).is_err()
                {
                    proof.push(sibling);
                }
            }
            if parent_pos < peak_pos {
                // save pos to tree buf
                queue.push_back((parent_pos, height + 1));
            }
        }
        Ok(())
    }

    /// Generate merkle proof for positions
    /// 1. sort positions
    /// 2. push merkle proof to proof by peak from left to right
    /// 3. push bagged right hand side root
    pub fn gen_proof(&self, mut pos_list: Vec<u64>) -> Result<MerkleProof<T, M>> {
        if pos_list.is_empty() {
            return Err(Error::GenProofForInvalidLeaves);
        }
        if self.mmr_size == 1 && pos_list == [0] {
            return Ok(MerkleProof::new(self.mmr_size, Vec::new()));
        }
        if pos_list.iter().any(|pos| pos_height_in_tree(*pos) > 0) {
            return Err(Error::GenProofForInvalidLeaves);
        }
        // ensure positions are sorted and unique
        pos_list.sort_unstable();
        pos_list.dedup();
        let peaks = get_peaks(self.mmr_size);
        let mut proof: Vec<T> = Vec::new();
        // generate merkle proof for each peaks
        let mut bagging_track = 0;
        for peak_pos in peaks {
            let pos_list: Vec<_> = take_while_vec(&mut pos_list, |&pos| pos <= peak_pos);
            if pos_list.is_empty() {
                bagging_track += 1;
            } else {
                bagging_track = 0;
            }
            self.gen_proof_for_peak(&mut proof, pos_list, peak_pos)?;
        }

        // ensure no remain positions
        if !pos_list.is_empty() {
            return Err(Error::GenProofForInvalidLeaves);
        }

        if bagging_track > 1 {
            let rhs_peaks = proof.split_off(proof.len() - bagging_track);
            proof.push(self.bag_rhs_peaks(rhs_peaks)?.expect("bagging rhs peaks"));
        }

        Ok(MerkleProof::new(self.mmr_size, proof))
    }

    /// Generate node merkle proof for positions
    /// 1. sort positions
    /// 2. push merkle proof to proof by peak from left to right
    /// 3. push bagged right hand side root
    pub fn gen_node_proof(&self, mut pos_list: Vec<u64>) -> Result<NodeMerkleProof<T, M>> {
        if pos_list.is_empty() {
            return Err(Error::GenProofForInvalidNodes);
        }
        if self.mmr_size == 1 && pos_list == [0] {
            return Ok(NodeMerkleProof::new(self.mmr_size, Vec::new()));
        }
        // ensure positions are sorted and unique
        pos_list.sort_unstable();
        pos_list.dedup();
        let peaks = get_peaks(self.mmr_size);
        let mut proof: Vec<(u64, T)> = Vec::new();
        // generate merkle proof for each peaks
        let mut bagging_track = 0;
        for peak_pos in peaks {
            let pos_list: Vec<_> = take_while_vec(&mut pos_list, |&pos| pos <= peak_pos);
            if pos_list.is_empty() {
                bagging_track += 1;
            } else {
                bagging_track = 0;
            }
            self.gen_node_proof_for_peak(&mut proof, pos_list, peak_pos)?;
        }

        // ensure no remain positions
        if !pos_list.is_empty() {
            return Err(Error::GenProofForInvalidNodes);
        }

        // starting from the rightmost peak, an unbroken sequence of
        // peaks that don't have descendants to be proven can be bagged
        // during the proof construction already since during verification,
        // they'll only be utilized during the bagging step anyway
        if bagging_track > 1 {
            let rhs_peaks = proof.split_off(proof.len() - bagging_track);
            proof.push((
                rhs_peaks[0].0,
                self.bag_rhs_peaks(rhs_peaks.iter().map(|(_pos, item)| item.clone()).collect())?
                    .expect("bagging rhs peaks"),
            ));
        }

        proof.sort_by_key(|(pos, _)| *pos);

        Ok(NodeMerkleProof::new(self.mmr_size, proof))
    }

    /// Generate proof that prior merkle root r' is an ancestor of current merkle proof r
    /// 1. calculate positions of peaks of old root r' given mmr size n
    /// 2. generate membership proof of peaks in root r
    /// 3. calculate r' from peaks(n)
    /// 4. return (mmr root r', peak hashes, membership proof of peaks(n) in r)
    pub fn gen_ancestry_proof(&self, prev_mmr_size: u64) -> Result<AncestryProof<T, M>> {
        let mut pos_list = get_peaks(prev_mmr_size);
        if pos_list.is_empty() {
            return Err(Error::GenProofForInvalidNodes);
        }
        if self.mmr_size == 1 && pos_list == [0] {
            return Ok(AncestryProof {
                prev_peaks: Vec::new(),
                prev_size: self.mmr_size,
                proof: NodeMerkleProof::new(self.mmr_size(), Vec::new()),
            });
        }
        // ensure positions are sorted and unique
        pos_list.sort_unstable();
        pos_list.dedup();
        let peaks = get_peaks(self.mmr_size);
        let mut proof: Vec<(u64, T)> = Vec::new();
        // generate merkle proof for each peaks
        let mut bagging_track = 0;
        for peak_pos in peaks {
            let pos_list: Vec<_> = take_while_vec(&mut pos_list, |&pos| pos <= peak_pos);
            if pos_list.is_empty() {
                bagging_track += 1;
            } else {
                bagging_track = 0;
            }
            self.gen_node_proof_for_peak(&mut proof, pos_list, peak_pos)?;
        }

        // ensure no remain positions
        if !pos_list.is_empty() {
            return Err(Error::GenProofForInvalidNodes);
        }

        // starting from the rightmost peak, an unbroken sequence of
        // peaks that don't have descendants to be proven can be bagged
        // during the proof construction already since during verification,
        // they'll only be utilized during the bagging step anyway
        if bagging_track > 1 {
            let rhs_peaks = proof.split_off(proof.len() - bagging_track);
            proof.push((
                rhs_peaks[0].0,
                self.bag_rhs_peaks(rhs_peaks.iter().map(|(_pos, item)| item.clone()).collect())?
                    .expect("bagging rhs peaks"),
            ));
        }

        proof.sort_by_key(|(pos, _)| *pos);

        let (prev_peaks, _prev_root) = self.get_ancestor_peaks_and_root(prev_mmr_size)?;

        Ok(AncestryProof {
            prev_peaks,
            prev_size: prev_mmr_size,
            proof: NodeMerkleProof::new(self.mmr_size, proof),
        })
    }
}

impl<T, M, S: MMRStoreWriteOps<T>> MMR<T, M, S> {
    pub fn commit(&mut self) -> Result<()> {
        self.batch.commit()
    }
}

#[derive(Debug)]
pub struct MerkleProof<T, M> {
    mmr_size: u64,
    proof: Vec<T>,
    merge: PhantomData<M>,
}

impl<T: Clone + PartialEq, M: Merge<Item = T>> MerkleProof<T, M> {
    pub fn new(mmr_size: u64, proof: Vec<T>) -> Self {
        MerkleProof {
            mmr_size,
            proof,
            merge: PhantomData,
        }
    }

    pub fn mmr_size(&self) -> u64 {
        self.mmr_size
    }

    pub fn proof_items(&self) -> &[T] {
        &self.proof
    }

    pub fn calculate_root(&self, leaves: Vec<(u64, T)>) -> Result<T> {
        calculate_root::<_, M, _>(leaves, self.mmr_size, self.proof.iter())
    }

    /// from merkle proof of leaf n to calculate merkle root of n + 1 leaves.
    /// by observe the MMR construction graph we know it is possible.
    /// https://github.com/jjyr/merkle-mountain-range#construct
    /// this is kinda tricky, but it works, and useful
    pub fn calculate_root_with_new_leaf(
        &self,
        mut leaves: Vec<(u64, T)>,
        new_pos: u64,
        new_elem: T,
        new_mmr_size: u64,
    ) -> Result<T> {
        let pos_height = pos_height_in_tree(new_pos);
        let next_height = pos_height_in_tree(new_pos + 1);
        if next_height > pos_height {
            let mut peaks_hashes =
                calculate_peaks_hashes::<_, M, _>(leaves, self.mmr_size, self.proof.iter())?;
            let peaks_pos = get_peaks(new_mmr_size);
            // reverse touched peaks
            let mut i = 0;
            while peaks_pos[i] < new_pos {
                i += 1
            }
            peaks_hashes[i..].reverse();
            calculate_root::<_, M, _>(vec![(new_pos, new_elem)], new_mmr_size, peaks_hashes.iter())
        } else {
            leaves.push((new_pos, new_elem));
            calculate_root::<_, M, _>(leaves, new_mmr_size, self.proof.iter())
        }
    }

    pub fn verify(&self, root: T, leaves: Vec<(u64, T)>) -> Result<bool> {
        self.calculate_root(leaves)
            .map(|calculated_root| calculated_root == root)
    }

    /// Verifies a old root and all incremental leaves.
    ///
    /// If this method returns `true`, it means the following assertion are true:
    /// - The old root could be generated in the history of the current MMR.
    /// - All incremental leaves are on the current MMR.
    /// - The MMR, which could generate the old root, appends all incremental leaves, becomes the
    ///   current MMR.
    pub fn verify_incremental(&self, root: T, prev_root: T, incremental: Vec<T>) -> Result<bool> {
        let current_leaves_count = get_peak_map(self.mmr_size);
        if current_leaves_count <= incremental.len() as u64 {
            return Err(Error::CorruptedProof);
        }
        // Test if previous root is correct.
        let prev_leaves_count = current_leaves_count - incremental.len() as u64;
        let prev_peaks_positions = {
            let prev_index = prev_leaves_count - 1;
            let prev_mmr_size = leaf_index_to_mmr_size(prev_index);
            let prev_peaks_positions = get_peaks(prev_mmr_size);
            if prev_peaks_positions.len() != self.proof.len() {
                return Err(Error::CorruptedProof);
            }
            prev_peaks_positions
        };
        let current_peaks_positions = get_peaks(self.mmr_size);

        let mut reverse_index = prev_peaks_positions.len() - 1;
        for (i, position) in prev_peaks_positions.iter().enumerate() {
            if *position < current_peaks_positions[i] {
                reverse_index = i;
                break;
            }
        }
        let mut prev_peaks: Vec<_> = self.proof_items().to_vec();
        let mut reverse_peaks = prev_peaks.split_off(reverse_index);
        reverse_peaks.reverse();
        prev_peaks.extend(reverse_peaks);

        let calculated_prev_root = bagging_peaks_hashes::<T, M>(prev_peaks)?;
        if calculated_prev_root != prev_root {
            return Ok(false);
        }

        // Test if incremental leaves are correct.
        let leaves = incremental
            .into_iter()
            .enumerate()
            .map(|(index, leaf)| {
                let pos = leaf_index_to_pos(prev_leaves_count + index as u64);
                (pos, leaf)
            })
            .collect();
        self.verify(root, leaves)
    }
}

fn calculate_peak_root<'a, T: 'a, M: Merge<Item = T>, I: Iterator<Item = &'a T>>(
    leaves: Vec<(u64, T)>,
    peak_pos: u64,
    proof_iter: &mut I,
) -> Result<T> {
    debug_assert!(!leaves.is_empty(), "can't be empty");
    // (position, hash, height)

    let mut queue: VecDeque<_> = leaves
        .into_iter()
        .map(|(pos, item)| (pos, item, 0))
        .collect();

    // calculate tree root from each items
    while let Some((pos, item, height)) = queue.pop_front() {
        if pos == peak_pos {
            if queue.is_empty() {
                // return root once queue is consumed
                return Ok(item);
            } else {
                return Err(Error::CorruptedProof);
            }
        }
        // calculate sibling
        let next_height = pos_height_in_tree(pos + 1);
        let (parent_pos, parent_item) = {
            let sibling_offset = sibling_offset(height);
            if next_height > height {
                // implies pos is right sibling
                let sib_pos = pos - sibling_offset;
                let parent_pos = pos + 1;
                let parent_item = if Some(&sib_pos) == queue.front().map(|(pos, _, _)| pos) {
                    let sibling_item = queue.pop_front().map(|(_, item, _)| item).unwrap();
                    M::merge(&sibling_item, &item)?
                } else {
                    let sibling_item = proof_iter.next().ok_or(Error::CorruptedProof)?;
                    M::merge(sibling_item, &item)?
                };
                (parent_pos, parent_item)
            } else {
                // pos is left sibling
                let sib_pos = pos + sibling_offset;
                let parent_pos = pos + parent_offset(height);
                let parent_item = if Some(&sib_pos) == queue.front().map(|(pos, _, _)| pos) {
                    let sibling_item = queue.pop_front().map(|(_, item, _)| item).unwrap();
                    M::merge(&item, &sibling_item)?
                } else {
                    let sibling_item = proof_iter.next().ok_or(Error::CorruptedProof)?;
                    M::merge(&item, sibling_item)?
                };
                (parent_pos, parent_item)
            }
        };

        if parent_pos <= peak_pos {
            queue.push_back((parent_pos, parent_item, height + 1))
        } else {
            return Err(Error::CorruptedProof);
        }
    }
    Err(Error::CorruptedProof)
}

fn calculate_peaks_hashes<'a, T: 'a + Clone, M: Merge<Item = T>, I: Iterator<Item = &'a T>>(
    mut leaves: Vec<(u64, T)>,
    mmr_size: u64,
    mut proof_iter: I,
) -> Result<Vec<T>> {
    if leaves.iter().any(|(pos, _)| pos_height_in_tree(*pos) > 0) {
        return Err(Error::GenProofForInvalidLeaves);
    }

    // special handle the only 1 leaf MMR
    if mmr_size == 1 && leaves.len() == 1 && leaves[0].0 == 0 {
        return Ok(leaves.into_iter().map(|(_pos, item)| item).collect());
    }
    // ensure leaves are sorted and unique
    leaves.sort_by_key(|(pos, _)| *pos);
    leaves.dedup_by(|a, b| a.0 == b.0);
    let peaks = get_peaks(mmr_size);

    let mut peaks_hashes: Vec<T> = Vec::with_capacity(peaks.len() + 1);
    for peak_pos in peaks {
        let mut leaves: Vec<_> = take_while_vec(&mut leaves, |(pos, _)| *pos <= peak_pos);
        let peak_root = if leaves.len() == 1 && leaves[0].0 == peak_pos {
            // leaf is the peak
            leaves.remove(0).1
        } else if leaves.is_empty() {
            // if empty, means the next proof is a peak root or rhs bagged root
            if let Some(peak_root) = proof_iter.next() {
                peak_root.clone()
            } else {
                // means that either all right peaks are bagged, or proof is corrupted
                // so we break loop and check no items left
                break;
            }
        } else {
            calculate_peak_root::<_, M, _>(leaves, peak_pos, &mut proof_iter)?
        };
        peaks_hashes.push(peak_root.clone());
    }

    // ensure nothing left in leaves
    if !leaves.is_empty() {
        return Err(Error::CorruptedProof);
    }

    // check rhs peaks
    if let Some(rhs_peaks_hashes) = proof_iter.next() {
        peaks_hashes.push(rhs_peaks_hashes.clone());
    }
    // ensure nothing left in proof_iter
    if proof_iter.next().is_some() {
        return Err(Error::CorruptedProof);
    }
    Ok(peaks_hashes)
}

fn bagging_peaks_hashes<T, M: Merge<Item = T>>(mut peaks_hashes: Vec<T>) -> Result<T> {
    // bagging peaks
    // bagging from right to left via hash(right, left).
    while peaks_hashes.len() > 1 {
        let right_peak = peaks_hashes.pop().expect("pop");
        let left_peak = peaks_hashes.pop().expect("pop");
        peaks_hashes.push(M::merge_peaks(&right_peak, &left_peak)?);
    }
    peaks_hashes.pop().ok_or(Error::CorruptedProof)
}

/// merkle proof
/// 1. sort items by position
/// 2. calculate root of each peak
/// 3. bagging peaks
fn calculate_root<'a, T: 'a + Clone, M: Merge<Item = T>, I: Iterator<Item = &'a T>>(
    leaves: Vec<(u64, T)>,
    mmr_size: u64,
    proof_iter: I,
) -> Result<T> {
    let peaks_hashes = calculate_peaks_hashes::<_, M, _>(leaves, mmr_size, proof_iter)?;
    bagging_peaks_hashes::<_, M>(peaks_hashes)
}

fn take_while_vec<T, P: Fn(&T) -> bool>(v: &mut Vec<T>, p: P) -> Vec<T> {
    for i in 0..v.len() {
        if !p(&v[i]) {
            return v.drain(..i).collect();
        }
    }
    v.drain(..).collect()
}