Expand description
Portable atomic types including support for 128-bit atomics, atomic float, etc.
- Provide all atomic integer types (
Atomic{I,U}{8,16,32,64}
) for all targets that can use atomic CAS. (i.e., all targets that can usestd
, and most no-std targets) - Provide
AtomicI128
andAtomicU128
. - Provide
AtomicF32
andAtomicF64
. (optional, requires thefloat
feature) - Provide atomic load/store for targets where atomic is not available at all in the standard library. (RISC-V without A-extension, MSP430, AVR)
- Provide atomic CAS for targets where atomic CAS is not available in the standard library. (thumbv6m, pre-v6 Arm, RISC-V without A-extension, MSP430, AVR, Xtensa, etc.) (always enabled for MSP430 and AVR, optional otherwise)
- Provide stable equivalents of the standard library’s atomic types’ unstable APIs, such as
AtomicPtr::fetch_*
. - Make features that require newer compilers, such as
fetch_{max,min}
,fetch_update
,as_ptr
,from_ptr
,AtomicBool::fetch_not
and stronger CAS failure ordering available on Rust 1.34+. - Provide workaround for bugs in the standard library’s atomic-related APIs, such as rust-lang/rust#100650,
fence
/compiler_fence
on MSP430 that cause LLVM error, etc.
portable-atomic version of std::sync::Arc
is provided by the portable-atomic-util crate.
§Usage
Add this to your Cargo.toml
:
[dependencies]
portable-atomic = "1"
The default features are mainly for users who use atomics larger than the pointer width. If you don’t need them, disabling the default features may reduce code size and compile time slightly.
[dependencies]
portable-atomic = { version = "1", default-features = false }
If your crate supports no-std environment and requires atomic CAS, enabling the require-cas
feature will allow the portable-atomic
to display a helpful error message to users on targets requiring additional action on the user side to provide atomic CAS.
[dependencies]
portable-atomic = { version = "1.3", default-features = false, features = ["require-cas"] }
§128-bit atomics support
Native 128-bit atomic operations are available on x86_64 (Rust 1.59+), AArch64 (Rust 1.59+), riscv64 (Rust 1.59+), Arm64EC (Rust 1.84+), s390x (Rust 1.84+), and powerpc64 (nightly only), otherwise the fallback implementation is used.
On x86_64, even if cmpxchg16b
is not available at compile-time (note: cmpxchg16b
target feature is enabled by default only on Apple and Windows (except Windows 7) targets), run-time detection checks whether cmpxchg16b
is available. If cmpxchg16b
is not available at either compile-time or run-time detection, the fallback implementation is used. See also portable_atomic_no_outline_atomics
cfg.
They are usually implemented using inline assembly, and when using Miri or ThreadSanitizer that do not support inline assembly, core intrinsics are used instead of inline assembly if possible.
See the atomic128
module’s readme for details.
§Optional features
-
fallback
(enabled by default)
Enable fallback implementations.Disabling this allows only atomic types for which the platform natively supports atomic operations.
-
Note that most of
fetch_*
operations of atomic floats are implemented using CAS loops, which can be slower than equivalent operations of atomic integers. (GPU targets have atomic instructions for float, so we plan to use these instructions for GPU targets in the future.) -
std
Usestd
. -
require-cas
Emit compile error if atomic CAS is not available. See Usage section and #100 for more. -
serde
Implementserde::{Serialize,Deserialize}
for atomic types.Note:
- The MSRV when this feature is enabled depends on the MSRV of serde.
-
critical-section
When this feature is enabled, this crate uses critical-section to provide atomic CAS for targets where it is not natively available. When enabling it, you should provide a suitable critical section implementation for the current target, see the critical-section documentation for details on how to do so.critical-section
support is useful to get atomic CAS when theunsafe-assume-single-core
feature can’t be used, such as multi-core targets, unprivileged code running under some RTOS, or environments where disabling interrupts needs extra care due to e.g. real-time requirements.Note that with the
critical-section
feature, critical sections are taken for all atomic operations, while withunsafe-assume-single-core
feature some operations don’t require disabling interrupts (loads and stores, but additionally on MSP430add
,sub
,and
,or
,xor
,not
). Therefore, for better performance, if all thecritical-section
implementation for your target does is disable interrupts, prefer usingunsafe-assume-single-core
feature instead.Note:
-
The MSRV when this feature is enabled depends on the MSRV of critical-section.
-
It is usually not recommended to always enable this feature in dependencies of the library.
Enabling this feature will prevent the end user from having the chance to take advantage of other (potentially) efficient implementations (Implementations provided by
unsafe-assume-single-core
feature, default implementations on MSP430 and AVR, implementation proposed in #60, etc. Other systems may also be supported in the future).The recommended approach for libraries is to leave it up to the end user whether or not to enable this feature. (However, it may make sense to enable this feature by default for libraries specific to a platform where other implementations are known not to work.)
As an example, the end-user’s
Cargo.toml
that uses a crate that provides a critical-section implementation and a crate that depends on portable-atomic as an option would be expected to look like this:[dependencies] portable-atomic = { version = "1", default-features = false, features = ["critical-section"] } crate-provides-critical-section-impl = "..." crate-uses-portable-atomic-as-feature = { version = "...", features = ["portable-atomic"] }
-
-
unsafe-assume-single-core
Assume that the target is single-core. When this feature is enabled, this crate provides atomic CAS for targets where atomic CAS is not available in the standard library by disabling interrupts.This feature is
unsafe
, and note the following safety requirements:-
Enabling this feature for multi-core systems is always unsound.
-
This uses privileged instructions to disable interrupts, so it usually doesn’t work on unprivileged mode. Enabling this feature in an environment where privileged instructions are not available, or if the instructions used are not sufficient to disable interrupts in the system, it is also usually considered unsound, although the details are system-dependent.
The following are known cases:
- On pre-v6 Arm, this disables only IRQs by default. For many systems (e.g., GBA) this is enough. If the system need to disable both IRQs and FIQs, you need to enable the
disable-fiq
feature together. - On RISC-V without A-extension, this generates code for machine-mode (M-mode) by default. If you enable the
s-mode
together, this generates code for supervisor-mode (S-mode). In particular,qemu-system-riscv*
uses OpenSBI as the default firmware.
See also the
interrupt
module’s readme. - On pre-v6 Arm, this disables only IRQs by default. For many systems (e.g., GBA) this is enough. If the system need to disable both IRQs and FIQs, you need to enable the
Consider using the
critical-section
feature for systems that cannot use this feature.It is very strongly discouraged to enable this feature in libraries that depend on
portable-atomic
. The recommended approach for libraries is to leave it up to the end user whether or not to enable this feature. (However, it may make sense to enable this feature by default for libraries specific to a platform where it is guaranteed to always be sound, for example in a hardware abstraction layer targeting a single-core chip.)Armv6-M (thumbv6m), pre-v6 Arm (e.g., thumbv4t, thumbv5te), RISC-V without A-extension, and Xtensa are currently supported.
Since all MSP430 and AVR are single-core, we always provide atomic CAS for them without this feature.
Enabling this feature for targets that have atomic CAS will result in a compile error.
Feel free to submit an issue if your target is not supported yet.
-
§Optional cfg
One of the ways to enable cfg is to set rustflags in the cargo config:
# .cargo/config.toml
[target.<target>]
rustflags = ["--cfg", "portable_atomic_no_outline_atomics"]
Or set environment variable:
RUSTFLAGS="--cfg portable_atomic_no_outline_atomics" cargo ...
-
--cfg portable_atomic_unsafe_assume_single_core
Since 1.4.0, this cfg is an alias ofunsafe-assume-single-core
feature.Originally, we were providing these as cfgs instead of features, but based on a strong request from the embedded ecosystem, we have agreed to provide them as features as well. See #94 for more.
-
--cfg portable_atomic_no_outline_atomics
Disable dynamic dispatching by run-time CPU feature detection.If dynamic dispatching by run-time CPU feature detection is enabled, it allows maintaining support for older CPUs while using features that are not supported on older CPUs, such as CMPXCHG16B (x86_64) and FEAT_LSE/FEAT_LSE2 (AArch64).
Note:
- Dynamic detection is currently only supported in x86_64, AArch64, Arm, RISC-V (disabled by default), Arm64EC, and powerpc64, otherwise it works the same as when this cfg is set.
- If the required target features are enabled at compile-time, the atomic operations are inlined.
- This is compatible with no-std (as with all features except
std
). - On some targets, run-time detection is disabled by default mainly for incomplete build environments, and can be enabled by
--cfg portable_atomic_outline_atomics
. (When both cfg are enabled,*_no_*
cfg is preferred.) - Some AArch64 targets enable LLVM’s
outline-atomics
target feature by default, so if you set this cfg, you may want to disable that as well. (portable-atomic’s outline-atomics does not depend on the compiler-rt symbols, so even if you need to disable LLVM’s outline-atomics, you may not need to disable portable-atomic’s outline-atomics.)
See also the
atomic128
module’s readme.
§Related Projects
- atomic-maybe-uninit: Atomic operations on potentially uninitialized integers.
- atomic-memcpy: Byte-wise atomic memcpy.
Re-exports§
pub use core::sync::atomic::Ordering;
pub use core::sync::atomic::compiler_fence;
pub use core::sync::atomic::fence;
Modules§
- Re-export of the
core::hint
module.
Macros§
Structs§
- A boolean type which can be safely shared between threads.
- Atomic
F32 float
A floating point type which can be safely shared between threads. - Atomic
F64 float
A floating point type which can be safely shared between threads. - An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- A raw pointer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.
- An integer type which can be safely shared between threads.