waffle/backend/
localify.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//! Localification: a simple form of register allocation that picks
//! locations for SSA values in Wasm locals.

use crate::backend::treeify::Trees;
use crate::cfg::CFGInfo;
use crate::entity::{EntityVec, PerEntity};
use crate::ir::{Block, FunctionBody, Local, Type, Value, ValueDef};
use smallvec::{smallvec, SmallVec};
use std::collections::{HashMap, HashSet};
use std::ops::Range;

#[derive(Clone, Debug, Default)]
pub struct Localifier {
    pub values: PerEntity<Value, SmallVec<[Local; 2]>>,
    pub locals: EntityVec<Local, Type>,
}

impl Localifier {
    pub fn compute(body: &FunctionBody, cfg: &CFGInfo, trees: &Trees) -> Self {
        Context::new(body, cfg, trees).compute()
    }
}

struct Context<'a> {
    body: &'a FunctionBody,
    cfg: &'a CFGInfo,
    trees: &'a Trees,
    results: Localifier,

    /// Precise liveness for each block: live Values at the end.
    block_end_live: PerEntity<Block, HashSet<Value>>,

    /// Liveranges for each Value, in an arbitrary index space
    /// (concretely, the span of first to last instruction visit step
    /// index in an RPO walk over the function body).
    ranges: HashMap<Value, Range<usize>>,
    /// Number of points.
    points: usize,
}

trait Visitor {
    fn visit_use(&mut self, _: Value) {}
    fn visit_def(&mut self, _: Value) {}
    fn post_inst(&mut self, _: Value) {}
    fn pre_inst(&mut self, _: Value) {}
    fn post_term(&mut self) {}
    fn pre_term(&mut self) {}
    fn post_params(&mut self) {}
    fn pre_params(&mut self) {}
}

struct BlockVisitor<'a, V: Visitor> {
    body: &'a FunctionBody,
    trees: &'a Trees,
    visitor: V,
}
impl<'a, V: Visitor> BlockVisitor<'a, V> {
    fn new(body: &'a FunctionBody, trees: &'a Trees, visitor: V) -> Self {
        log::trace!(
            "localify: running on:\n{}",
            body.display_verbose("| ", None)
        );
        Self {
            body,
            trees,
            visitor,
        }
    }
    fn visit_block(&mut self, block: Block) {
        self.visitor.post_term();
        self.body.blocks[block].terminator.visit_uses(|u| {
            self.visit_use(u);
        });
        self.visitor.pre_term();

        for &inst in self.body.blocks[block].insts.iter().rev() {
            if self.trees.owner.contains_key(&inst) || self.trees.remat.contains(&inst) {
                continue;
            }
            self.visitor.post_inst(inst);
            self.visit_inst(inst, /* root = */ true);
            self.visitor.pre_inst(inst);
        }

        self.visitor.post_params();
        for &(_, param) in &self.body.blocks[block].params {
            self.visitor.visit_def(param);
        }
        self.visitor.pre_params();
    }
    fn visit_inst(&mut self, value: Value, root: bool) {
        // If this is an instruction...
        if let ValueDef::Operator(_, args, _) = &self.body.values[value] {
            // If root, we need to process the def.
            if root {
                self.visitor.visit_def(value);
            }
            // Handle uses.
            for &arg in &self.body.arg_pool[*args] {
                self.visit_use(arg);
            }
        }
    }
    fn visit_use(&mut self, value: Value) {
        let value = self.body.resolve_alias(value);
        if let ValueDef::PickOutput(value, _, _) = self.body.values[value] {
            self.visit_use(value);
            return;
        }
        if self.trees.owner.contains_key(&value) {
            // If this is a treeified value, then don't process the use,
            // but process the instruction directly here.
            self.visit_inst(value, /* root = */ false);
        } else {
            // Otherwise, this is a proper use.
            self.visitor.visit_use(value);
        }
    }
}

impl<'a> Context<'a> {
    fn new(body: &'a FunctionBody, cfg: &'a CFGInfo, trees: &'a Trees) -> Self {
        let mut results = Localifier::default();

        // Create locals for function args.
        for &(ty, value) in &body.blocks[body.entry].params {
            let param_local = results.locals.push(ty);
            results.values[value] = smallvec![param_local];
        }

        Self {
            body,
            cfg,
            trees,
            results,
            block_end_live: PerEntity::default(),
            ranges: HashMap::default(),
            points: 0,
        }
    }

    fn compute_liveness(&mut self) {
        struct LivenessVisitor {
            live: HashSet<Value>,
        }
        impl Visitor for LivenessVisitor {
            fn visit_use(&mut self, value: Value) {
                self.live.insert(value);
            }
            fn visit_def(&mut self, value: Value) {
                self.live.remove(&value);
            }
        }

        let mut workqueue: Vec<Block> = self.cfg.rpo.values().cloned().collect();
        let mut workqueue_set: HashSet<Block> = workqueue.iter().cloned().collect();
        while let Some(block) = workqueue.pop() {
            workqueue_set.remove(&block);
            let live = self.block_end_live[block].clone();
            let mut visitor = BlockVisitor::new(self.body, self.trees, LivenessVisitor { live });
            visitor.visit_block(block);
            let live = visitor.visitor.live;

            for &pred in &self.body.blocks[block].preds {
                let pred_live = &mut self.block_end_live[pred];
                let mut changed = false;
                for &value in &live {
                    if pred_live.insert(value) {
                        changed = true;
                    }
                }
                if changed && workqueue_set.insert(pred) {
                    workqueue.push(pred);
                }
            }
        }
    }

    fn find_ranges(&mut self) {
        let mut point = 0;

        struct LiveRangeVisitor<'b> {
            point: &'b mut usize,
            live: HashMap<Value, usize>,
            ranges: &'b mut HashMap<Value, Range<usize>>,
        }
        impl<'b> Visitor for LiveRangeVisitor<'b> {
            fn pre_params(&mut self) {
                *self.point += 1;
            }
            fn pre_inst(&mut self, _: Value) {
                *self.point += 1;
            }
            fn pre_term(&mut self) {
                *self.point += 1;
            }
            fn visit_use(&mut self, value: Value) {
                self.live.entry(value).or_insert(*self.point);
            }
            fn visit_def(&mut self, value: Value) {
                let range = if let Some(start) = self.live.remove(&value) {
                    start..(*self.point + 1)
                } else {
                    *self.point..(*self.point + 1)
                };
                let existing_range = self.ranges.entry(value).or_insert(range.clone());
                existing_range.start = std::cmp::min(existing_range.start, range.start);
                existing_range.end = std::cmp::max(existing_range.end, range.end);
            }
        }

        for &block in self.cfg.rpo.values().rev() {
            let visitor = LiveRangeVisitor {
                live: HashMap::default(),
                point: &mut point,
                ranges: &mut self.ranges,
            };
            let mut visitor = BlockVisitor::new(&self.body, &self.trees, visitor);
            // Live-outs to succ blocks: in this block-local
            // handling, model them as uses as the end of the block.
            for &livein in &self.block_end_live[block] {
                let livein = self.body.resolve_alias(livein);
                visitor.visitor.visit_use(livein);
            }
            // Visit all insts.
            visitor.visit_block(block);
            // Live-ins from pred blocks: anything still live has a
            // virtual def at top of block.
            let still_live = visitor.visitor.live.keys().cloned().collect::<Vec<_>>();
            for live in still_live {
                visitor.visitor.visit_def(live);
            }
        }

        self.points = point + 1;
    }

    fn allocate(&mut self) {
        // Sort values by ranges' starting points, then value to break ties.
        let mut ranges: Vec<(Value, std::ops::Range<usize>)> =
            self.ranges.iter().map(|(k, v)| (*k, v.clone())).collect();
        ranges.sort_unstable_by_key(|(val, range)| (range.start, *val));

        // Keep a list of expiring Locals by expiry point.
        let mut expiring: HashMap<usize, SmallVec<[(Type, Local); 8]>> = HashMap::new();

        // Iterate over allocation space, processing range starts (at
        // which point we allocate) and ends (at which point we add to
        // the freelist).
        let mut range_idx = 0;
        let mut freelist: HashMap<Type, Vec<Local>> = HashMap::new();

        for i in 0..self.points {
            // Process ends. (Ends are exclusive, so we do them
            // first; another range can grab the local at the same
            // point index in this same iteration.)
            if let Some(expiring) = expiring.remove(&i) {
                for (ty, local) in expiring {
                    log::trace!(" -> expiring {} of type {} back to freelist", local, ty);
                    freelist.entry(ty).or_insert_with(|| vec![]).push(local);
                }
            }

            // Process starts.
            while range_idx < ranges.len() && ranges[range_idx].1.start == i {
                let (value, range) = ranges[range_idx].clone();
                range_idx += 1;
                log::trace!(
                    "localify: processing range for {}: {}..{}",
                    value,
                    range.start,
                    range.end
                );

                // If the value is an arg on block0, ignore; these
                // already have fixed locations.
                if let &ValueDef::BlockParam(b, _, _) = &self.body.values[value] {
                    if b == self.body.entry {
                        continue;
                    }
                }

                // Try getting a local from the freelist; if not,
                // allocate a new one.
                let mut allocs = smallvec![];
                let expiring = expiring.entry(range.end).or_insert_with(|| smallvec![]);
                for &ty in self.body.values[value].tys(&self.body.type_pool) {
                    let local = freelist
                        .get_mut(&ty)
                        .and_then(|v| v.pop())
                        .unwrap_or_else(|| {
                            log::trace!(" -> allocating new local of type {}", ty);
                            self.results.locals.push(ty)
                        });
                    log::trace!(" -> got local {} of type {}", local, ty);
                    allocs.push(local);
                    expiring.push((ty, local));
                }
                self.results.values[value] = allocs;
            }
        }
    }

    fn compute(mut self) -> Localifier {
        self.compute_liveness();
        self.find_ranges();
        self.allocate();
        self.results
    }
}