waffle/backend/
reducify.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
//! Reducification: turning a potentially irreducible CFG into a
//! reducible CFG. We perform context-sensitive code duplication to
//! "peel off" the parts of loops that are reached by side-entrances,
//! branching back to the main loop as soon as control passes through
//! the loop header again.
//!
//! # Limitations
//!
//! ***WARNING*** EXPONENTIAL BLOWUP POTENTIAL ***WARNING***
//!
//! This pass is designed on the assumption that irreducible control
//! flow is rare, and needs to be handled somehow but it's OK to,
//! e.g., duplicate most of a loop body to do so. The tradeoff that
//! we're aiming for is that we want zero runtime overhead -- we do
//! not want a performance cliff if someone accidentally introduces an
//! irreducible edge -- and we're hoping that this remains rare. If
//! you feed this pass a state machine, or a fully-connected clique,
//! for example, or even a deep nest of loops, one can get much worse
//! than 2x code-size increase. You have been warned!
//!
//! In the future we may consider a hybrid approach where we start
//! with this algorithm, keep track of block-count increase, and abort
//! and move to a Relooper-style (dynamic label variable-based)
//! approach with no code duplication if a threshold is reached.
//!
//! ***WARNING*** EXPONENTIAL BLOWUP POTENTIAL ***WARNING***
//!
//! # Finding Loop Headers
//!
//! The basic idea is that we compute RPO and treat all backedges in
//! RPO (i.e., edges from rpo-index i to rpo-index j, where j <= i) as
//! loop backedges, with all blocks "under the edge" (with RPO indices
//! i..=j) in the loop. We then "properly nest" loops, so if we have,
//! e.g.:
//!
//! ```plain
//!     block0
//!     block1  |
//!     block2  | loop     |
//!     block3  |          |
//!     block4             | loop
//! ```
//!
//! we "fix the nesting" by pushing down the lower extent of the first
//! loop to block4. We do so in a single post-pass fixup scan that
//! keeps a stack, pushes when meeting a loop header, pops while the
//! innermost is no longer in the initial header-set, then ensures
//! that all header-blockson the stack are inserted into every
//! header-set it passes over.
//!
//! The effect of this is to compute a loop nest *as if* irreducible
//! edges (side loop entrances) did not exist. We'll fix them up later
//! with the code duplication.
//!
//! # Finding Irreducible Loop Headers
//!
//! After computing header-sets, find edges from B1 to B2 such that
//! headers(B2) - headers(B1) - {B2} is non-empty -- that is, we add a
//! header block (enter a new loop) going from B1 to B2, and that new
//! header block is not B2 itself. This is a "side-entrance" into a
//! loop, and is irreducible.
//!
//! # Duplicating Code
//!
//! We create blocks under contexts defined by "skipped
//! headers", where the context is computed at at an edge
//! (From, To) as (where `U` is set union, `-` is set
//! subtraction, `&` is set intersection, `!S` is the set
//! complement):
//!
//! ```plain
//!     Gen = (headers(To) - headers(From)) - {To}
//!         = headers(To) & !headers(From) & !{To}
//!     Kill = (headers(From) - headers(To)) U {To}
//!          = (headers(From) & !headers(To)) U {To}
//!
//! let ToContext = (FromContext - Kill) U Gen
//!               = (FromContext & !Kill) U Gen
//!               = (FromContext & !((headers(From) & !headers(To)) U {To})) U
//!                 (headers(To) & !headers(From) & !{To})
//!               = (FromContext & !((headers(From) U {To}) & (!headers(To) U {To}))) U
//!                 (headers(To) & !headers(From) & !{To})
//!               = (FromContext & (!(headers(From) U {To}) U !(!headers(To) U {To}))) U
//!                 (headers(To) & !headers(From) & !{To})
//!               = (FromContext & ((!headers(From) & !{To}) U (headers(To) & !{To}))) U
//!                 (headers(To) & !headers(From) & !{To})
//!               = (FromContext & !headers(From) & !{To}) U
//!                 (FromContext & headers(To) & !{To}) U
//!                 (headers(To) & !headers(From) & !{To})
//! ```
//!
//! invariant: for every B, we only ever have a context C where C c headers(B)
//!
//! then the first term goes away (FromContext & !headers(From)
//! = 0) and we can simplify to:
//!
//! ```plain
//! let ToContext = headers(To) & !{To} & (FromContext U !headers(From))
//! ```
//!
//! in other words: when entering a loop except through its
//! header, add to context; stay in that context inside the
//! loop; leave the context when we leave the loop.
//!
//! Note that in the case with no irreducible edges, this
//! becomes the special case where every context is {} and no
//! blocks are actually duplicated (but we returned early above
//! to avoid this no-op transform).
//!
//! Patching up use-def links is somewhat tricky. Consider the
//! CFG:
//!
//! ```plain
//!         1
//!        / \
//!       /   \
//!      2 --> 3
//!      2 <-- 3
//!           /
//!          4
//! ```
//!
//! Which is irreducible (it contains the canonical irreducible
//! graph 1->2, 2->3, 3->2) and has an exit-path with block 4
//! that is dominated by block 3. Block 4 can thus use values
//! defined in block 3, but if we perform elaboration as:
//!
//! ```plain
//!     1
//!   /  \__
//!  2<.<--3'
//!  v ^   |
//!  3-/  _|
//!   \ /
//!    4
//! ```
//!
//! that is, we have two copies of the block 3,and each has an
//! exit to the one copy of 4.
//!
//! Any values defined in 3 and used in 4 in the original CFG
//! will need to pass through blockparams to merge the two
//! versions in the elaborated CFG.
//!
//! To fix this problem, we perform a max-SSA cut at all blocks
//! that have an in-edge from a block with a larger header-set
//! (i.e., a loop exit edge) if the exited loop has a
//! side-entrance; this is the only way in which we can have a
//! merge-point between different copies of the same subgraph.

use crate::entity::EntityRef;
use crate::{cfg::CFGInfo, cfg::RPOIndex, entity::PerEntity, Block, FunctionBody, Value, ValueDef};
use fxhash::{FxHashMap, FxHashSet};
use smallvec::SmallVec;
use std::borrow::Cow;
use std::collections::{HashSet, VecDeque};

pub struct Reducifier<'a> {
    body: &'a FunctionBody,
    cfg: CFGInfo,
    blocks: PerEntity<Block, BlockState>,
}

#[derive(Debug, Clone, Default)]
struct BlockState {
    headers: FxHashSet<Block>,
    is_header: bool,
}

impl<'a> Reducifier<'a> {
    pub fn new(body: &'a FunctionBody) -> Reducifier<'a> {
        let cfg = CFGInfo::new(body);
        Reducifier {
            body,
            cfg,
            blocks: PerEntity::default(),
        }
    }

    pub fn run(&mut self) -> Cow<'a, FunctionBody> {
        // First, compute all of the loop header-sets.
        // - Start by computing RPO.
        // - Find backedges (edges (a, b) where rpo(b) <= rpo(a)).
        // - For each backedge, mark extent of rpo-indices "under"
        //   edge as within header.
        // - Do one forward pass to properly nest regions, keeping
        //   stack of headers when we entered their regions and
        //   enforcing LIFO by extending appropriately.
        let cfg = CFGInfo::new(&self.body);

        for (rpo, &block) in cfg.rpo.entries() {
            for &succ in &self.body.blocks[block].succs {
                let succ_rpo = cfg.rpo_pos[succ].unwrap();
                if succ_rpo.index() <= rpo.index() {
                    for i in succ_rpo.index()..=rpo.index() {
                        let b = cfg.rpo[RPOIndex::new(i)];
                        self.blocks[b].headers.insert(succ);
                        self.blocks[b].is_header = true;
                    }
                }
            }
        }

        let mut header_stack = vec![];
        for &block in cfg.rpo.values() {
            while let Some(innermost) = header_stack.last() {
                if !self.blocks[block].headers.contains(innermost) {
                    header_stack.pop();
                } else {
                    break;
                }
            }
            if self.blocks[block].is_header {
                header_stack.push(block);
            }

            for &header in &header_stack {
                self.blocks[block].headers.insert(header);
            }
        }

        // Now, check whether any irreducible edges exist: edges from
        // B1 to B2 where headers(B2) - headers(B1) - {B2} is not
        // empty (i.e., the edge jumps into a new loop -- adds a new
        // header -- without going through that header block).
        let mut irreducible_headers: FxHashSet<Block> = FxHashSet::default();
        for (block, data) in self.body.blocks.entries() {
            let headers = &self.blocks[block].headers;
            for &succ in &data.succs {
                log::trace!("examining edge {} -> {}", block, succ);
                for &succ_header in &self.blocks[succ].headers {
                    log::trace!("  successor {} has header {}", succ, succ_header);
                    if succ_header != succ && !headers.contains(&succ_header) {
                        log::trace!("    -> irreducible edge");
                        irreducible_headers.insert(succ_header);
                    }
                }
            }
        }

        if irreducible_headers.is_empty() {
            return Cow::Borrowed(self.body);
        }

        if log::log_enabled!(log::Level::Trace) {
            for block in self.body.blocks.iter() {
                let mut headers = self.blocks[block]
                    .headers
                    .iter()
                    .cloned()
                    .collect::<Vec<_>>();
                headers.sort();
                log::trace!("* {}: header set {:?}", block, headers);
            }
        }

        // Now, in the irreducible case, "elaborate" the CFG.

        // First do limited conversion to max-SSA to fix up references
        // across contexts.
        let mut cut_blocks = HashSet::default();
        for (block, data) in self.body.blocks.entries() {
            for &succ in &data.succs {
                // Loop exits
                for header in &self.blocks[block].headers {
                    if !self.blocks[succ].headers.contains(header)
                        && irreducible_headers.contains(header)
                    {
                        log::trace!("cut-block at loop exit: {}", succ);
                        cut_blocks.insert(succ);
                    }
                }
                // Loop side entries
                for header in &self.blocks[succ].headers {
                    if !self.blocks[block].headers.contains(header) && *header != succ {
                        log::trace!("cut-block at loop side entry: {}", succ);
                        cut_blocks.insert(succ);
                    }
                }
            }
        }

        let mut new_body = self.body.clone();
        let cfg = CFGInfo::new(&new_body);
        crate::passes::maxssa::run(&mut new_body, Some(cut_blocks), &cfg);
        crate::passes::resolve_aliases::run(&mut new_body);

        log::trace!("after max-SSA run:\n{}\n", new_body.display("| ", None));

        // Implicitly, context {} has an identity-map from old block
        // number to new block number. We use the map only for
        // non-empty contexts.
        let mut context_map: FxHashMap<Vec<Block>, usize> = FxHashMap::default();
        let mut contexts: Vec<Vec<Block>> = vec![vec![]];
        context_map.insert(vec![], 0);
        let mut block_map: FxHashMap<(usize, Block), Block> = FxHashMap::default();
        let mut value_map: FxHashMap<(usize, Value), Value> = FxHashMap::default();

        // List of (ctx, new block) tuples for duplicated code.
        let mut cloned_blocks: Vec<(usize, Block)> = vec![];
        // Map from block in new body to (ctx, orig block) target, to
        // allow updating terminators.
        let mut terminators: FxHashMap<Block, Vec<(usize, Block)>> = FxHashMap::default();

        let mut queue: VecDeque<(usize, Block)> = VecDeque::new();
        let mut visited: FxHashSet<(usize, Block)> = FxHashSet::default();
        queue.push_back((0, new_body.entry));
        visited.insert((0, new_body.entry));
        while let Some((ctx, block)) = queue.pop_front() {
            log::trace!(
                "elaborate: block {} in context {} ({:?})",
                block,
                ctx,
                contexts[ctx]
            );

            // If this is a non-default context, replicate the block.
            let new_block = if ctx != 0 {
                log::trace!("cloning block {} in new context", block);
                let new_block = new_body.add_block();
                new_body.blocks[new_block].desc = format!("Cloned {}", block);
                let params = new_body.blocks[block].params.clone();
                for (ty, val) in params {
                    let blockparam = new_body.add_blockparam(new_block, ty);
                    value_map.insert((ctx, val), blockparam);
                }

                block_map.insert((ctx, block), new_block);
                cloned_blocks.push((ctx, new_block));

                // Copy over all value definitions, but don't rewrite
                // args yet -- we'll do a separate pass for that.
                let insts = new_body.blocks[block].insts.clone();
                for value in insts {
                    let def = new_body.values[value].clone();
                    let new_value = new_body.values.push(def);
                    value_map.insert((ctx, value), new_value);
                    new_body.blocks[new_block].insts.push(new_value);
                }

                // Copy over the terminator but don't update yet --
                // we'll do that later too.
                new_body.blocks[new_block].terminator = new_body.blocks[block].terminator.clone();

                new_block
            } else {
                block
            };

            // For every terminator, determine the target context:
            //
            // let ToContext = headers(To) & !{To} & (FromContext U !headers(From))
            let term = terminators.entry(new_block).or_insert_with(|| vec![]);
            let succs = new_body.blocks[block].succs.clone();
            for succ in succs {
                let mut ctx_blocks = self.blocks[succ]
                    .headers
                    .iter()
                    .cloned()
                    .collect::<Vec<_>>();
                ctx_blocks.sort();
                ctx_blocks.retain(|&header_block| {
                    header_block != succ
                        && (contexts[ctx].contains(&header_block)
                            || !self.blocks[block].headers.contains(&header_block))
                });
                let to_ctx = *context_map.entry(ctx_blocks.clone()).or_insert_with(|| {
                    let id = contexts.len();
                    contexts.push(ctx_blocks);
                    id
                });
                log::trace!(
                    "elaborate: edge {} -> {} from ctx {:?} goes to ctx {:?}",
                    block,
                    succ,
                    contexts[ctx],
                    contexts[to_ctx]
                );

                term.push((to_ctx, succ));

                if visited.insert((to_ctx, succ)) {
                    log::trace!("enqueue block {} ctx {}", succ, to_ctx);
                    queue.push_back((to_ctx, succ));
                }
            }
        }

        // Second pass: rewrite args, and set up terminators. Both
        // happen in a second pass so that we have the block- and
        // value-map available for all blocks and values, regardless
        // of cycles or processing order.
        for (ctx, new_block) in cloned_blocks {
            for &inst in &new_body.blocks[new_block].insts {
                match &mut new_body.values[inst] {
                    ValueDef::Operator(_, args, _) => {
                        let new_args = new_body.arg_pool[*args]
                            .iter()
                            .map(|&val| value_map.get(&(ctx, val)).cloned().unwrap_or(val))
                            .collect::<SmallVec<[Value; 4]>>();
                        let new_args = new_body.arg_pool.from_iter(new_args.into_iter());
                        *args = new_args;
                    }
                    ValueDef::PickOutput(val, _, _) | ValueDef::Alias(val) => {
                        *val = value_map.get(&(ctx, *val)).cloned().unwrap_or(*val);
                    }
                    _ => unreachable!(),
                }
            }

            new_body.blocks[new_block]
                .terminator
                .update_uses(|u| *u = value_map.get(&(ctx, *u)).cloned().unwrap_or(*u));
        }

        for (block, block_def) in new_body.blocks.entries_mut() {
            log::trace!("processing terminators for block {}", block);
            let terms = match terminators.get(&block) {
                Some(t) => t,
                // If no entry in `terminators`, we didn't visit the
                // block; it must not be reachable.
                None => continue,
            };
            let mut terms = terms.iter();
            block_def.terminator.update_targets(|target| {
                let &(to_ctx, to_orig_block) = terms.next().unwrap();
                target.block = block_map
                    .get(&(to_ctx, to_orig_block))
                    .cloned()
                    .unwrap_or(to_orig_block);
            });
        }

        new_body.recompute_edges();

        log::trace!("After duplication:\n{}\n", new_body.display("| ", None));

        new_body.validate().unwrap();
        new_body.verify_reducible().unwrap();

        Cow::Owned(new_body)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{
        entity::EntityRef, BlockTarget, FuncDecl, Module, Operator, SignatureData, Terminator, Type,
    };

    #[test]
    fn test_irreducible() {
        let _ = env_logger::try_init();

        let mut module = Module::empty();
        let sig = module.signatures.push(SignatureData {
            params: vec![Type::I32, Type::I64, Type::F64],
            returns: vec![Type::I64],
        });
        let mut body = FunctionBody::new(&module, sig);

        let block1 = body.entry;
        let block2 = body.add_block();
        let block3 = body.add_block();
        let block4 = body.add_block();

        let arg0 = body.blocks[block1].params[0].1;
        let arg1 = body.blocks[block1].params[1].1;
        let arg2 = body.blocks[block1].params[2].1;

        body.set_terminator(
            block1,
            Terminator::CondBr {
                cond: arg0,
                if_true: BlockTarget {
                    block: block2,
                    args: vec![arg1],
                },
                if_false: BlockTarget {
                    block: block3,
                    args: vec![arg2],
                },
            },
        );

        let block2_param = body.add_blockparam(block2, Type::I64);
        let block3_param = body.add_blockparam(block3, Type::F64);

        let block2_param_cast = body.add_op(
            block2,
            Operator::F64ReinterpretI64,
            &[block2_param],
            &[Type::F64],
        );

        let block3_param_cast = body.add_op(
            block3,
            Operator::I64ReinterpretF64,
            &[block3_param],
            &[Type::I64],
        );

        body.set_terminator(
            block2,
            Terminator::Br {
                target: BlockTarget {
                    block: block3,
                    args: vec![block2_param_cast],
                },
            },
        );
        body.set_terminator(
            block3,
            Terminator::CondBr {
                cond: arg0,
                if_true: BlockTarget {
                    block: block2,
                    args: vec![block3_param_cast],
                },
                if_false: BlockTarget {
                    block: block4,
                    args: vec![],
                },
            },
        );

        body.set_terminator(
            block4,
            Terminator::Return {
                values: vec![block3_param_cast],
            },
        );

        log::debug!("Body:\n{}", body.display("| ", Some(&module)));

        body.validate().unwrap();

        let mut reducifier = Reducifier::new(&body);
        let new_body = reducifier.run();

        new_body.validate().unwrap();

        log::debug!("Reducified body:\n{}", body.display("| ", Some(&module)));

        let cfg = CFGInfo::new(&new_body);
        for (block, def) in new_body.blocks.entries() {
            for &succ in &def.succs {
                // For any edge to a block earlier in RPO, that block
                // must dominate us.
                if cfg.rpo_pos[succ].unwrap().index() <= cfg.rpo_pos[block].unwrap().index() {
                    assert!(cfg.dominates(succ, block));
                }
            }
        }

        // Now ensure we can generate a Wasm module (with reducible
        // control flow).
        module
            .funcs
            .push(FuncDecl::Body(sig, "func0".to_string(), body));
        let wasm = module.to_wasm_bytes().unwrap();
        log::debug!("wasm bytes: {:?}", wasm);
    }
}