postcard_rpc/header.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
//! # Postcard-RPC Header Format
//!
//! Postcard-RPC's header is made up of three main parts:
//!
//! 1. A one-byte discriminant
//! 2. A 1-8 byte "Key"
//! 3. A 1-4 byte "Sequence Number"
//!
//! The Postcard-RPC Header is NOT encoded using `postcard`'s wire format.
//!
//! ## Discriminant
//!
//! The discriminant field is always one byte, and consists of three subfields
//! in the form `0bNNMM_VVVV`.
//!
//! * The two msbits are "key length", where the two N length bits represent
//! a key length of 2^N. All values are valid.
//! * The next two msbits are "sequence number length", where the two M length
//! bits represent a sequence number length of 2^M. Values 00, 01, and 10
//! are valid.
//! * The four lsbits are "protocol version", where the four V version bits
//! represent an unsigned 4-bit number. Currently only 0000 is a valid value.
//!
//! ## Key
//!
//! The Key consists of an fnv1a hash of the path string and schema of the
//! contained message. These are calculated using the [`hash` module](crate::hash),
//! and are natively calculated as an 8-byte hash.
//!
//! Keys may be encoded with variable fidelity on the wire, as follows:
//!
//! * For 8-byte keys, all key bytes appear in the form `[A, B, C, D, E, F, G, H]`.
//! * For 4-byte keys, the 8-byte form is compressed as `[A^B, C^D, E^F, G^H]`.
//! * For 2-byte keys, the 8-byte form is compressed as `[A^B^C^D, E^F^G^H]`.
//! * For 1-byte keys, the 8-byte form is compressed as `A^B^C^D^E^F^G^H`.
//!
//! The length of the Key is determined by the two `NN` bits in the discriminant.
//!
//! The length of the key is usually chosen by the **Server**, as the server is
//! able to calculate the minimum number of bits necessary to avoid collisions.
//!
//! When Clients receive a server response, they shall note the Key length used,
//! and match that for all subsequent messages. When Clients make first connection,
//! they shall use the 8-byte form by default.
//!
//! ## Sequence Number
//!
//! The Sequence Number is an unsigned integer used to match request-response pairs,
//! and disambiguate between multiple in-flight messages.
//!
//! Sequence Numbers may be encoded with variable fidelity on the wire, always in
//! little-endian order, of 1, 2, or 4 bytes.
//!
//! The length of the Sequence Number is determined by the two `MM` bits in the
//! discriminant.
//!
//! The length of the key is chosen by the "originator" of the message. For Endpoints
//! this is the client making the request. For Topics, this is the device sending the
//! topic message.
use crate::{Key, Key1, Key2, Key4};
//////////////////////////////////////////////////////////////////////////////
// VARKEY
//////////////////////////////////////////////////////////////////////////////
/// A variably sized header Key
///
/// NOTE: We DO NOT impl Serialize/Deserialize for this type because
/// we use non-postcard-compatible format (externally tagged) on the wire.
///
/// NOTE: VarKey implements `PartialEq` by reducing two VarKeys down to the
/// smaller of the two forms, and checking whether they match. This allows
/// a key in 8-byte form to be compared to a key in 1, 2, or 4-byte form
/// for equality.
#[derive(Debug, Copy, Clone)]
pub enum VarKey {
/// A one byte key
Key1(Key1),
/// A two byte key
Key2(Key2),
/// A four byte key
Key4(Key4),
/// An eight byte key
Key8(Key),
}
/// We implement PartialEq MANUALLY for VarKey, because keys of different lengths SHOULD compare
/// as equal.
impl PartialEq for VarKey {
fn eq(&self, other: &Self) -> bool {
// figure out the minimum length
match (self, other) {
// Matching kinds
(VarKey::Key1(self_key), VarKey::Key1(other_key)) => self_key.0.eq(&other_key.0),
(VarKey::Key2(self_key), VarKey::Key2(other_key)) => self_key.0.eq(&other_key.0),
(VarKey::Key4(self_key), VarKey::Key4(other_key)) => self_key.0.eq(&other_key.0),
(VarKey::Key8(self_key), VarKey::Key8(other_key)) => self_key.0.eq(&other_key.0),
// For the rest of the options, degrade the LARGER key to the SMALLER key, and then
// check for equivalence after that.
(VarKey::Key1(this), VarKey::Key2(other)) => {
let other = Key1::from_key2(*other);
this.0.eq(&other.0)
}
(VarKey::Key1(this), VarKey::Key4(other)) => {
let other = Key1::from_key4(*other);
this.0.eq(&other.0)
}
(VarKey::Key1(this), VarKey::Key8(other)) => {
let other = Key1::from_key8(*other);
this.0.eq(&other.0)
}
(VarKey::Key2(this), VarKey::Key1(other)) => {
let this = Key1::from_key2(*this);
this.0.eq(&other.0)
}
(VarKey::Key2(this), VarKey::Key4(other)) => {
let other = Key2::from_key4(*other);
this.0.eq(&other.0)
}
(VarKey::Key2(this), VarKey::Key8(other)) => {
let other = Key2::from_key8(*other);
this.0.eq(&other.0)
}
(VarKey::Key4(this), VarKey::Key1(other)) => {
let this = Key1::from_key4(*this);
this.0.eq(&other.0)
}
(VarKey::Key4(this), VarKey::Key2(other)) => {
let this = Key2::from_key4(*this);
this.0.eq(&other.0)
}
(VarKey::Key4(this), VarKey::Key8(other)) => {
let other = Key4::from_key8(*other);
this.0.eq(&other.0)
}
(VarKey::Key8(this), VarKey::Key1(other)) => {
let this = Key1::from_key8(*this);
this.0.eq(&other.0)
}
(VarKey::Key8(this), VarKey::Key2(other)) => {
let this = Key2::from_key8(*this);
this.0.eq(&other.0)
}
(VarKey::Key8(this), VarKey::Key4(other)) => {
let this = Key4::from_key8(*this);
this.0.eq(&other.0)
}
}
}
}
impl VarKey {
/// Keys can not be reaised, but instead only shrunk.
///
/// This method will shrink to the requested length if that length is
/// smaller than the current representation, or if the requested length
/// is the same or larger than the current representation, it will be
/// kept unchanged
pub fn shrink_to(&mut self, kind: VarKeyKind) {
match (&self, kind) {
(VarKey::Key1(_), _) => {
// Nothing to shrink
}
(VarKey::Key2(key2), VarKeyKind::Key1) => {
*self = VarKey::Key1(Key1::from_key2(*key2));
}
(VarKey::Key2(_), _) => {
// We are already as small or smaller than the request
}
(VarKey::Key4(key4), VarKeyKind::Key1) => {
*self = VarKey::Key1(Key1::from_key4(*key4));
}
(VarKey::Key4(key4), VarKeyKind::Key2) => {
*self = VarKey::Key2(Key2::from_key4(*key4));
}
(VarKey::Key4(_), _) => {
// We are already as small or smaller than the request
}
(VarKey::Key8(key), VarKeyKind::Key1) => {
*self = VarKey::Key1(Key1::from_key8(*key));
}
(VarKey::Key8(key), VarKeyKind::Key2) => {
*self = VarKey::Key2(Key2::from_key8(*key));
}
(VarKey::Key8(key), VarKeyKind::Key4) => {
*self = VarKey::Key4(Key4::from_key8(*key));
}
(VarKey::Key8(_), VarKeyKind::Key8) => {
// Nothing to do
}
}
}
/// The current kind/length of the key
pub fn kind(&self) -> VarKeyKind {
match self {
VarKey::Key1(_) => VarKeyKind::Key1,
VarKey::Key2(_) => VarKeyKind::Key2,
VarKey::Key4(_) => VarKeyKind::Key4,
VarKey::Key8(_) => VarKeyKind::Key8,
}
}
}
//////////////////////////////////////////////////////////////////////////////
// VARKEYKIND
//////////////////////////////////////////////////////////////////////////////
/// The kind or length of the variably sized header Key
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum VarKeyKind {
/// A one byte key
Key1,
/// A two byte key
Key2,
/// A four byte key
Key4,
/// An eight byte key
Key8,
}
//////////////////////////////////////////////////////////////////////////////
// VARSEQ
//////////////////////////////////////////////////////////////////////////////
/// A variably sized sequence number
///
/// NOTE: We use the standard PartialEq here, as we DO NOT treat sequence
/// numbers of different lengths as equivalent.
///
/// We DO NOT impl Serialize/Deserialize for this type because we use
/// non-postcard-compatible format (externally tagged)
#[derive(Debug, Clone, Copy)]
pub enum VarSeq {
/// A one byte sequence number
Seq1(u8),
/// A two byte sequence number
Seq2(u16),
/// A four byte sequence number
Seq4(u32),
}
impl From<u8> for VarSeq {
fn from(value: u8) -> Self {
Self::Seq1(value)
}
}
impl From<u16> for VarSeq {
fn from(value: u16) -> Self {
Self::Seq2(value)
}
}
impl From<u32> for VarSeq {
fn from(value: u32) -> Self {
Self::Seq4(value)
}
}
impl Into<u8> for VarSeq {
fn into(self) -> u8 {
match self {
VarSeq::Seq1(v) => v,
VarSeq::Seq2(v) => v as u8,
VarSeq::Seq4(v) => v as u8,
}
}
}
impl Into<u16> for VarSeq {
fn into(self) -> u16 {
match self {
VarSeq::Seq1(v) => v.into(),
VarSeq::Seq2(v) => v,
VarSeq::Seq4(v) => v as u16,
}
}
}
impl Into<u32> for VarSeq {
fn into(self) -> u32 {
match self {
VarSeq::Seq1(v) => v.into(),
VarSeq::Seq2(v) => v.into(),
VarSeq::Seq4(v) => v,
}
}
}
impl PartialEq for VarSeq {
fn eq(&self, other: &Self) -> bool {
Into::<u32>::into(*self) == Into::<u32>::into(*other)
}
}
impl VarSeq {
/// Resize (up or down) to the requested kind.
///
/// When increasing size, the number is left-extended, e.g. `0x42u8` becomes
/// `0x0000_0042u32` when resizing 1 -> 4.
///
/// When decreasing size, the number is truncated, e.g. `0xABCD_EF12u32`
/// becomes `0x12u8` when resizing 4 -> 1.
pub fn resize(&mut self, kind: VarSeqKind) {
match (&self, kind) {
(VarSeq::Seq1(_), VarSeqKind::Seq1) => {}
(VarSeq::Seq2(_), VarSeqKind::Seq2) => {}
(VarSeq::Seq4(_), VarSeqKind::Seq4) => {}
(VarSeq::Seq1(s), VarSeqKind::Seq2) => {
*self = VarSeq::Seq2((*s).into());
}
(VarSeq::Seq1(s), VarSeqKind::Seq4) => {
*self = VarSeq::Seq4((*s).into());
}
(VarSeq::Seq2(s), VarSeqKind::Seq1) => {
*self = VarSeq::Seq1((*s) as u8);
}
(VarSeq::Seq2(s), VarSeqKind::Seq4) => {
*self = VarSeq::Seq4((*s).into());
}
(VarSeq::Seq4(s), VarSeqKind::Seq1) => {
*self = VarSeq::Seq1((*s) as u8);
}
(VarSeq::Seq4(s), VarSeqKind::Seq2) => {
*self = VarSeq::Seq2((*s) as u16);
}
}
}
}
//////////////////////////////////////////////////////////////////////////////
// VARSEQKIND
//////////////////////////////////////////////////////////////////////////////
/// The Kind or Length of a VarSeq
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum VarSeqKind {
/// A one byte sequence number
Seq1,
/// A two byte sequence number
Seq2,
/// A four byte sequence number
Seq4,
}
//////////////////////////////////////////////////////////////////////////////
// VARHEADER
//////////////////////////////////////////////////////////////////////////////
/// A variably sized message header
///
/// NOTE: We use the standard PartialEq here as it will do the correct things.
///
/// Sequence numbers must be EXACTLY the same, and keys must be equivalent when
/// degraded to the smaller of the two.
///
/// We DO NOT impl Serialize/Deserialize for this type because we use
/// non-postcard-compatible format (externally tagged)
#[derive(Debug, PartialEq, Clone, Copy)]
pub struct VarHeader {
/// The variably sized Key
pub key: VarKey,
/// The variably sized Sequence Number
pub seq_no: VarSeq,
}
#[allow(clippy::unusual_byte_groupings)]
impl VarHeader {
/// Bits for a key of ONE byte
pub const KEY_ONE_BITS: u8 = 0b00_00_0000;
/// Bits for a key of TWO bytes
pub const KEY_TWO_BITS: u8 = 0b01_00_0000;
/// Bits for a key of FOUR bytes
pub const KEY_FOUR_BITS: u8 = 0b10_00_0000;
/// Bits for a key of EIGHT bytes
pub const KEY_EIGHT_BITS: u8 = 0b11_00_0000;
/// Mask bits
pub const KEY_MASK_BITS: u8 = 0b11_00_0000;
/// Bits for a sequence number of ONE bytes
pub const SEQ_ONE_BITS: u8 = 0b00_00_0000;
/// Bits for a sequence number of TWO bytes
pub const SEQ_TWO_BITS: u8 = 0b00_01_0000;
/// Bits for a sequence number of FOUR bytes
pub const SEQ_FOUR_BITS: u8 = 0b00_10_0000;
/// Mask bits
pub const SEQ_MASK_BITS: u8 = 0b00_11_0000;
/// Bits for a version number of ZERO
pub const VER_ZERO_BITS: u8 = 0b00_00_0000;
/// Mask bits
pub const VER_MASK_BITS: u8 = 0b00_00_1111;
/// Encode the header to a Vec of bytes
#[cfg(feature = "use-std")]
pub fn write_to_vec(&self) -> Vec<u8> {
// start with placeholder byte
let mut out = vec![0u8; 1];
let mut disc_out: u8;
match &self.key {
VarKey::Key1(k) => {
disc_out = Self::KEY_ONE_BITS;
out.push(k.0);
}
VarKey::Key2(k) => {
disc_out = Self::KEY_TWO_BITS;
out.extend_from_slice(&k.0);
}
VarKey::Key4(k) => {
disc_out = Self::KEY_FOUR_BITS;
out.extend_from_slice(&k.0);
}
VarKey::Key8(k) => {
disc_out = Self::KEY_EIGHT_BITS;
out.extend_from_slice(&k.0);
}
}
match &self.seq_no {
VarSeq::Seq1(s) => {
disc_out |= Self::SEQ_ONE_BITS;
out.push(*s);
}
VarSeq::Seq2(s) => {
disc_out |= Self::SEQ_TWO_BITS;
out.extend_from_slice(&s.to_le_bytes());
}
VarSeq::Seq4(s) => {
disc_out |= Self::SEQ_FOUR_BITS;
out.extend_from_slice(&s.to_le_bytes());
}
}
// push discriminant to the end...
out.push(disc_out);
// ...and swap-remove the placeholder byte, moving the discriminant to the front
out.swap_remove(0);
out
}
/// Attempt to write the header to the given slice
///
/// If the slice is large enough, a `Some` will be returned with the bytes used
/// to encode the header, as well as the remaining unused bytes.
///
/// If the slice is not large enough, a `None` will be returned, and some bytes
/// of the buffer may have been modified.
pub fn write_to_slice<'a>(&self, buf: &'a mut [u8]) -> Option<(&'a mut [u8], &'a mut [u8])> {
let (disc_out, mut remain) = buf.split_first_mut()?;
let mut used = 1;
match &self.key {
VarKey::Key1(k) => {
*disc_out = Self::KEY_ONE_BITS;
let (keybs, remain2) = remain.split_first_mut()?;
*keybs = k.0;
remain = remain2;
used += 1;
}
VarKey::Key2(k) => {
*disc_out = Self::KEY_TWO_BITS;
let (keybs, remain2) = remain.split_at_mut_checked(2)?;
keybs.copy_from_slice(&k.0);
remain = remain2;
used += 2;
}
VarKey::Key4(k) => {
*disc_out = Self::KEY_FOUR_BITS;
let (keybs, remain2) = remain.split_at_mut_checked(4)?;
keybs.copy_from_slice(&k.0);
remain = remain2;
used += 4;
}
VarKey::Key8(k) => {
*disc_out = Self::KEY_EIGHT_BITS;
let (keybs, remain2) = remain.split_at_mut_checked(8)?;
keybs.copy_from_slice(&k.0);
remain = remain2;
used += 8;
}
}
match &self.seq_no {
VarSeq::Seq1(s) => {
*disc_out |= Self::SEQ_ONE_BITS;
let (seqbs, _) = remain.split_first_mut()?;
*seqbs = *s;
used += 1;
}
VarSeq::Seq2(s) => {
*disc_out |= Self::SEQ_TWO_BITS;
let (seqbs, _) = remain.split_at_mut_checked(2)?;
seqbs.copy_from_slice(&s.to_le_bytes());
used += 2;
}
VarSeq::Seq4(s) => {
*disc_out |= Self::SEQ_FOUR_BITS;
let (seqbs, _) = remain.split_at_mut_checked(4)?;
seqbs.copy_from_slice(&s.to_le_bytes());
used += 4;
}
}
Some(buf.split_at_mut(used))
}
/// Attempt to decode a header from the given bytes.
///
/// If a well-formed header was found, a `Some` will be returned with the
/// decoded header and unused remaining bytes.
///
/// If no well-formed header was found, a `None` will be returned.
pub fn take_from_slice(buf: &[u8]) -> Option<(Self, &[u8])> {
let (disc, mut remain) = buf.split_first()?;
// For now, we only trust version zero
if (*disc & Self::VER_MASK_BITS) != Self::VER_ZERO_BITS {
return None;
}
let key = match (*disc) & Self::KEY_MASK_BITS {
Self::KEY_ONE_BITS => {
let (keybs, remain2) = remain.split_first()?;
remain = remain2;
VarKey::Key1(Key1(*keybs))
}
Self::KEY_TWO_BITS => {
let (keybs, remain2) = remain.split_at_checked(2)?;
remain = remain2;
let mut buf = [0u8; 2];
buf.copy_from_slice(keybs);
VarKey::Key2(Key2(buf))
}
Self::KEY_FOUR_BITS => {
let (keybs, remain2) = remain.split_at_checked(4)?;
remain = remain2;
let mut buf = [0u8; 4];
buf.copy_from_slice(keybs);
VarKey::Key4(Key4(buf))
}
Self::KEY_EIGHT_BITS => {
let (keybs, remain2) = remain.split_at_checked(8)?;
remain = remain2;
let mut buf = [0u8; 8];
buf.copy_from_slice(keybs);
VarKey::Key8(Key(buf))
}
// Impossible: all bits covered
_ => unreachable!(),
};
let seq_no = match (*disc) & Self::SEQ_MASK_BITS {
Self::SEQ_ONE_BITS => {
let (seqbs, remain3) = remain.split_first()?;
remain = remain3;
VarSeq::Seq1(*seqbs)
}
Self::SEQ_TWO_BITS => {
let (seqbs, remain3) = remain.split_at_checked(2)?;
remain = remain3;
let mut buf = [0u8; 2];
buf.copy_from_slice(seqbs);
VarSeq::Seq2(u16::from_le_bytes(buf))
}
Self::SEQ_FOUR_BITS => {
let (seqbs, remain3) = remain.split_at_checked(4)?;
remain = remain3;
let mut buf = [0u8; 4];
buf.copy_from_slice(seqbs);
VarSeq::Seq4(u32::from_le_bytes(buf))
}
// Possible (could be 0b11), is invalid
_ => return None,
};
Some((Self { key, seq_no }, remain))
}
}
#[cfg(test)]
mod test {
use super::{VarHeader, VarKey, VarSeq};
use crate::{Key, Key1, Key2};
#[test]
fn wire_format() {
let checks: &[(_, &[u8])] = &[
(
VarHeader {
key: VarKey::Key1(Key1(0)),
seq_no: VarSeq::Seq1(0x00),
},
&[
VarHeader::KEY_ONE_BITS | VarHeader::SEQ_ONE_BITS,
0x00,
0x00,
],
),
(
VarHeader {
key: VarKey::Key1(Key1(1)),
seq_no: VarSeq::Seq1(0x02),
},
&[
VarHeader::KEY_ONE_BITS | VarHeader::SEQ_ONE_BITS,
0x01,
0x02,
],
),
(
VarHeader {
key: VarKey::Key2(Key2([0x42, 0xAF])),
seq_no: VarSeq::Seq1(0x02),
},
&[
VarHeader::KEY_TWO_BITS | VarHeader::SEQ_ONE_BITS,
0x42,
0xAF,
0x02,
],
),
(
VarHeader {
key: VarKey::Key1(Key1(1)),
seq_no: VarSeq::Seq2(0x42_AF),
},
&[
VarHeader::KEY_ONE_BITS | VarHeader::SEQ_TWO_BITS,
0x01,
0xAF,
0x42,
],
),
(
VarHeader {
key: VarKey::Key8(Key([0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, 0x89])),
seq_no: VarSeq::Seq4(0x42_AF_AA_BB),
},
&[
VarHeader::KEY_EIGHT_BITS | VarHeader::SEQ_FOUR_BITS,
0x12,
0x23,
0x34,
0x45,
0x56,
0x67,
0x78,
0x89,
0xBB,
0xAA,
0xAF,
0x42,
],
),
];
let mut buf = [0u8; 1 + 8 + 4];
for (val, exp) in checks.iter() {
let (used, _) = val.write_to_slice(&mut buf).unwrap();
assert_eq!(used, *exp);
let v = val.write_to_vec();
assert_eq!(&v, *exp);
let (deser, remain) = VarHeader::take_from_slice(used).unwrap();
assert!(remain.is_empty());
assert_eq!(val, &deser);
}
}
#[test]
fn var_seq_equality() {
let val32 = 0x12345678;
let val16 = 0x9abc;
let val8 = 0xde;
assert_eq!(VarSeq::Seq1(val8), VarSeq::Seq1(val8));
assert_eq!(VarSeq::Seq1(val8), VarSeq::Seq2(val8.into()));
assert_eq!(VarSeq::Seq1(val8), VarSeq::Seq4(val8.into()));
assert_ne!(VarSeq::Seq2(val16), VarSeq::Seq1(val16 as u8));
assert_eq!(VarSeq::Seq2(val16), VarSeq::Seq2(val16));
assert_eq!(VarSeq::Seq2(val16), VarSeq::Seq4(val16.into()));
assert_ne!(VarSeq::Seq4(val32), VarSeq::Seq1(val32 as u8));
assert_ne!(VarSeq::Seq4(val32), VarSeq::Seq2(val32 as u16));
assert_eq!(VarSeq::Seq4(val32), VarSeq::Seq4(val32));
}
}