postcard_rpc/
uniques.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
//! Create unique type lists at compile time
//!
//! This is an excercise in the capabilities of macros and const fns.
//!
//! From a very high level, the process goes like this:
//!
//! 1. We recursively look at a type, counting how many types it contains,
//!      WITHOUT considering de-duplication. This is used as an "upper bound"
//!      of the number of potential types we could have to report
//! 2. Create an array of `[Option<&NamedType>; MAX]` that we use something
//!      like an append-only vec.
//! 3. Recursively traverse the type AGAIN, this time collecting all unique
//!      non-primitive types we encounter, and adding them to the list. This
//!      is outrageously inefficient, but it is done at const time with all
//!      the restrictions it entails, because we don't pay at runtime.
//! 4. Record how many types we ACTUALLY collected in step 3, and create a
//!      new array, `[&NamedType; ACTUAL]`, and copy the unique types into
//!      this new array
//! 5. Convert this `[&NamedType; N]` array into a `&'static [&NamedType]`
//!      array to make it possible to handle with multiple types
//! 6. If we are collecting MULTIPLE types into a single aggregate report,
//!      then we make a new array of `[Option<&NamedType>; sum(all types)]`,
//!      by calculating the sum of types contained for each list calculated
//!      in step 4.
//! 7. We then perform the same "merging" process from 3, pushing any unique
//!      type we find into the aggregate list, and recording the number of
//!      unique types we found in the entire set.
//! 8. We then perform the same "shrinking" process from step 4, leaving us
//!      with a single array, `[&NamedType; TOTAL]` containing all unique types
//! 9. We then perform the same "slicing" process from step 5, to get our
//!      final `&'static [&NamedType]`.

use postcard_schema::{
    schema::{DataModelType, DataModelVariant, NamedType, NamedValue, NamedVariant},
    Schema,
};

//////////////////////////////////////////////////////////////////////////////
// STAGE 0 - HELPERS
//////////////////////////////////////////////////////////////////////////////

/// `is_prim` returns whether the type is a *primitive*, or a built-in type that
/// does not need to be sent over the wire.
const fn is_prim(dmt: &DataModelType) -> bool {
    match dmt {
        // These are all primitives
        DataModelType::Bool => true,
        DataModelType::I8 => true,
        DataModelType::U8 => true,
        DataModelType::I16 => true,
        DataModelType::I32 => true,
        DataModelType::I64 => true,
        DataModelType::I128 => true,
        DataModelType::U16 => true,
        DataModelType::U32 => true,
        DataModelType::U64 => true,
        DataModelType::U128 => true,
        DataModelType::Usize => true,
        DataModelType::Isize => true,
        DataModelType::F32 => true,
        DataModelType::F64 => true,
        DataModelType::Char => true,
        DataModelType::String => true,
        DataModelType::ByteArray => true,
        DataModelType::Unit => true,
        DataModelType::Schema => true,

        // A unit-struct is always named, so it is not primitive, as the
        // name has meaning even without a value
        DataModelType::UnitStruct => false,
        // Items with subtypes are composite, and therefore not primitives, as
        // we need to convey this information.
        DataModelType::Option(_) | DataModelType::NewtypeStruct(_) | DataModelType::Seq(_) => false,
        DataModelType::Tuple(_) | DataModelType::TupleStruct(_) => false,
        DataModelType::Map { .. } => false,
        DataModelType::Struct(_) => false,
        DataModelType::Enum(_) => false,
    }
}

/// A const version of `<str as PartialEq>::eq`
const fn str_eq(a: &str, b: &str) -> bool {
    let mut i = 0;
    if a.len() != b.len() {
        return false;
    }
    let a_by = a.as_bytes();
    let b_by = b.as_bytes();
    while i < a.len() {
        if a_by[i] != b_by[i] {
            return false;
        }
        i += 1;
    }
    true
}

/// A const version of `<NamedType as PartialEq>::eq`
const fn nty_eq(a: &NamedType, b: &NamedType) -> bool {
    str_eq(a.name, b.name) && dmt_eq(a.ty, b.ty)
}

/// A const version of `<[&NamedType] as PartialEq>::eq`
const fn ntys_eq(a: &[&NamedType], b: &[&NamedType]) -> bool {
    if a.len() != b.len() {
        return false;
    }
    let mut i = 0;
    while i < a.len() {
        if !nty_eq(a[i], b[i]) {
            return false;
        }
        i += 1;
    }
    true
}

/// A const version of `<DataModelType as PartialEq>::eq`
const fn dmt_eq(a: &DataModelType, b: &DataModelType) -> bool {
    match (a, b) {
        // Data model types are ONLY matching if they are both the same variant
        //
        // For primitives (and unit structs), we only check the discriminant matches.
        (DataModelType::Bool, DataModelType::Bool) => true,
        (DataModelType::I8, DataModelType::I8) => true,
        (DataModelType::U8, DataModelType::U8) => true,
        (DataModelType::I16, DataModelType::I16) => true,
        (DataModelType::I32, DataModelType::I32) => true,
        (DataModelType::I64, DataModelType::I64) => true,
        (DataModelType::I128, DataModelType::I128) => true,
        (DataModelType::U16, DataModelType::U16) => true,
        (DataModelType::U32, DataModelType::U32) => true,
        (DataModelType::U64, DataModelType::U64) => true,
        (DataModelType::U128, DataModelType::U128) => true,
        (DataModelType::Usize, DataModelType::Usize) => true,
        (DataModelType::Isize, DataModelType::Isize) => true,
        (DataModelType::F32, DataModelType::F32) => true,
        (DataModelType::F64, DataModelType::F64) => true,
        (DataModelType::Char, DataModelType::Char) => true,
        (DataModelType::String, DataModelType::String) => true,
        (DataModelType::ByteArray, DataModelType::ByteArray) => true,
        (DataModelType::Unit, DataModelType::Unit) => true,
        (DataModelType::UnitStruct, DataModelType::UnitStruct) => true,
        (DataModelType::Schema, DataModelType::Schema) => true,

        // For non-primitive types, we check whether all children are equivalent as well.
        (DataModelType::Option(nta), DataModelType::Option(ntb)) => nty_eq(nta, ntb),
        (DataModelType::NewtypeStruct(nta), DataModelType::NewtypeStruct(ntb)) => nty_eq(nta, ntb),
        (DataModelType::Seq(nta), DataModelType::Seq(ntb)) => nty_eq(nta, ntb),

        (DataModelType::Tuple(ntsa), DataModelType::Tuple(ntsb)) => ntys_eq(ntsa, ntsb),
        (DataModelType::TupleStruct(ntsa), DataModelType::TupleStruct(ntsb)) => ntys_eq(ntsa, ntsb),
        (
            DataModelType::Map {
                key: keya,
                val: vala,
            },
            DataModelType::Map {
                key: keyb,
                val: valb,
            },
        ) => nty_eq(keya, keyb) && nty_eq(vala, valb),
        (DataModelType::Struct(nvalsa), DataModelType::Struct(nvalsb)) => vals_eq(nvalsa, nvalsb),
        (DataModelType::Enum(nvarsa), DataModelType::Enum(nvarsb)) => vars_eq(nvarsa, nvarsb),

        // Any mismatches are not equal
        _ => false,
    }
}

/// A const version of `<NamedVariant as PartialEq>::eq`
const fn var_eq(a: &NamedVariant, b: &NamedVariant) -> bool {
    str_eq(a.name, b.name) && dmv_eq(a.ty, b.ty)
}

/// A const version of `<&[&NamedVariant] as PartialEq>::eq`
const fn vars_eq(a: &[&NamedVariant], b: &[&NamedVariant]) -> bool {
    if a.len() != b.len() {
        return false;
    }
    let mut i = 0;
    while i < a.len() {
        if !var_eq(a[i], b[i]) {
            return false;
        }
        i += 1;
    }
    true
}

/// A const version of `<&[&NamedValue] as PartialEq>::eq`
const fn vals_eq(a: &[&NamedValue], b: &[&NamedValue]) -> bool {
    if a.len() != b.len() {
        return false;
    }
    let mut i = 0;
    while i < a.len() {
        if !str_eq(a[i].name, b[i].name) {
            return false;
        }
        if !nty_eq(a[i].ty, b[i].ty) {
            return false;
        }

        i += 1;
    }
    true
}

/// A const version of `<DataModelVariant as PartialEq>::eq`
const fn dmv_eq(a: &DataModelVariant, b: &DataModelVariant) -> bool {
    match (a, b) {
        (DataModelVariant::UnitVariant, DataModelVariant::UnitVariant) => true,
        (DataModelVariant::NewtypeVariant(nta), DataModelVariant::NewtypeVariant(ntb)) => {
            nty_eq(nta, ntb)
        }
        (DataModelVariant::TupleVariant(ntsa), DataModelVariant::TupleVariant(ntsb)) => {
            ntys_eq(ntsa, ntsb)
        }
        (DataModelVariant::StructVariant(nvarsa), DataModelVariant::StructVariant(nvarsb)) => {
            vals_eq(nvarsa, nvarsb)
        }
        _ => false,
    }
}

//////////////////////////////////////////////////////////////////////////////
// STAGE 1 - UPPER BOUND CALCULATION
//////////////////////////////////////////////////////////////////////////////

/// Count the number of unique types contained by this NamedType,
/// including children and this type itself.
///
/// For built-in primitives, this could be zero. For non-primitive
/// types, this will be at least one.
///
/// This function does NOT attempt to perform any de-duplication.
pub const fn unique_types_nty_upper(nty: &NamedType) -> usize {
    let child_ct = unique_types_dmt_upper(nty.ty);
    if is_prim(nty.ty) {
        child_ct
    } else {
        child_ct + 1
    }
}

/// Count the number of unique types contained by this DataModelType,
/// ONLY counting children, and not this type, as this will be counted
/// when considering the NamedType instead.
//
// TODO: We could attempt to do LOCAL de-duplication, for example
// a `[u8; 32]` would end up as a tuple of 32 items, drastically
// inflating the total.
const fn unique_types_dmt_upper(dmt: &DataModelType) -> usize {
    match dmt {
        // These are all primitives
        DataModelType::Bool => 0,
        DataModelType::I8 => 0,
        DataModelType::U8 => 0,
        DataModelType::I16 => 0,
        DataModelType::I32 => 0,
        DataModelType::I64 => 0,
        DataModelType::I128 => 0,
        DataModelType::U16 => 0,
        DataModelType::U32 => 0,
        DataModelType::U64 => 0,
        DataModelType::U128 => 0,
        DataModelType::Usize => 0,
        DataModelType::Isize => 0,
        DataModelType::F32 => 0,
        DataModelType::F64 => 0,
        DataModelType::Char => 0,
        DataModelType::String => 0,
        DataModelType::ByteArray => 0,
        DataModelType::Unit => 0,
        DataModelType::UnitStruct => 0,
        DataModelType::Schema => 0,

        // Items with one subtype
        DataModelType::Option(nt) | DataModelType::NewtypeStruct(nt) | DataModelType::Seq(nt) => {
            unique_types_nty_upper(nt)
        }
        // tuple-ish
        DataModelType::Tuple(nts) | DataModelType::TupleStruct(nts) => {
            let mut uniq = 0;
            let mut i = 0;
            while i < nts.len() {
                uniq += unique_types_nty_upper(nts[i]);
                i += 1;
            }
            uniq
        }
        DataModelType::Map { key, val } => {
            unique_types_nty_upper(key) + unique_types_nty_upper(val)
        }
        DataModelType::Struct(nvals) => {
            let mut uniq = 0;
            let mut i = 0;
            while i < nvals.len() {
                uniq += unique_types_nty_upper(nvals[i].ty);
                i += 1;
            }
            uniq
        }
        DataModelType::Enum(nvars) => {
            let mut uniq = 0;
            let mut i = 0;
            while i < nvars.len() {
                uniq += unique_types_var_upper(nvars[i]);
                i += 1;
            }
            uniq
        }
    }
}

/// Count the number of unique types contained by this NamedVariant,
/// ONLY counting children, and not this type, as this will be counted
/// when considering the NamedType instead.
//
// TODO: We could attempt to do LOCAL de-duplication, for example
// a `[u8; 32]` would end up as a tuple of 32 items, drastically
// inflating the total.
const fn unique_types_var_upper(nvar: &NamedVariant) -> usize {
    match nvar.ty {
        DataModelVariant::UnitVariant => 0,
        DataModelVariant::NewtypeVariant(nt) => unique_types_nty_upper(nt),
        DataModelVariant::TupleVariant(nts) => {
            let mut uniq = 0;
            let mut i = 0;
            while i < nts.len() {
                uniq += unique_types_nty_upper(nts[i]);
                i += 1;
            }
            uniq
        }
        DataModelVariant::StructVariant(nvals) => {
            let mut uniq = 0;
            let mut i = 0;
            while i < nvals.len() {
                uniq += unique_types_nty_upper(nvals[i].ty);
                i += 1;
            }
            uniq
        }
    }
}

//////////////////////////////////////////////////////////////////////////////
// STAGE 2/3 - COLLECTION OF UNIQUES AND CALCULATION OF EXACT SIZE
//////////////////////////////////////////////////////////////////////////////

/// This function collects the set of unique types, reporting the entire list
/// (which might only be partially used), as well as the *used* length.
///
/// The parameter MAX should be the highest possible number of unique types,
/// if NONE of the types have any duplication. This should be calculated using
/// [`unique_types_nty_upper()`]. This upper bound allows us to pre-allocate
/// enough storage for the collection process.
pub const fn type_chewer_nty<const MAX: usize>(
    nty: &NamedType,
) -> ([Option<&NamedType>; MAX], usize) {
    // Calculate the number of unique items in the children of this type
    let (mut arr, mut used) = type_chewer_dmt::<MAX>(nty.ty);
    let mut i = 0;

    // determine if this is a single-item primitive - if so, skip adding
    // this type to the unique list
    let mut found = is_prim(nty.ty);

    while !found && i < used {
        let Some(ty) = arr[i] else { panic!() };
        if nty_eq(nty, ty) {
            found = true;
        }
        i += 1;
    }
    if !found {
        arr[used] = Some(nty);
        used += 1;
    }
    (arr, used)
}

/// This function collects the set of unique types, reporting the entire list
/// (which might only be partially used), as well as the *used* length.
///
/// The parameter MAX should be the highest possible number of unique types,
/// if NONE of the types have any duplication. This should be calculated using
/// [`unique_types_nty_upper()`]. This upper bound allows us to pre-allocate
/// enough storage for the collection process.
//
// TODO: There is a LOT of duplicated code here. This is to reduce the number of
// intermediate `[Option<T>; MAX]` arrays we contain, as well as the total amount
// of recursion depth. I am open to suggestions of how to reduce this. Part of
// this restriction is that we can't take an `&mut` as a const fn arg, so we
// always have to do it by value, then merge-in the changes.
const fn type_chewer_dmt<const MAX: usize>(
    dmt: &DataModelType,
) -> ([Option<&NamedType>; MAX], usize) {
    match dmt {
        // These are all primitives - they never have any children to report.
        DataModelType::Bool => ([None; MAX], 0),
        DataModelType::I8 => ([None; MAX], 0),
        DataModelType::U8 => ([None; MAX], 0),
        DataModelType::I16 => ([None; MAX], 0),
        DataModelType::I32 => ([None; MAX], 0),
        DataModelType::I64 => ([None; MAX], 0),
        DataModelType::I128 => ([None; MAX], 0),
        DataModelType::U16 => ([None; MAX], 0),
        DataModelType::U32 => ([None; MAX], 0),
        DataModelType::U64 => ([None; MAX], 0),
        DataModelType::U128 => ([None; MAX], 0),
        DataModelType::Usize => ([None; MAX], 0),
        DataModelType::Isize => ([None; MAX], 0),
        DataModelType::F32 => ([None; MAX], 0),
        DataModelType::F64 => ([None; MAX], 0),
        DataModelType::Char => ([None; MAX], 0),
        DataModelType::String => ([None; MAX], 0),
        DataModelType::ByteArray => ([None; MAX], 0),
        DataModelType::Unit => ([None; MAX], 0),
        DataModelType::Schema => ([None; MAX], 0),

        // A unit struct *as a namedtype* can be a unique/non-primitive type,
        // but DataModelType calculation is only concerned with CHILDREN, and
        // a unit struct has none.
        DataModelType::UnitStruct => ([None; MAX], 0),

        // Items with one subtype
        DataModelType::Option(nt) | DataModelType::NewtypeStruct(nt) | DataModelType::Seq(nt) => {
            type_chewer_nty::<MAX>(nt)
        }
        // tuple-ish
        DataModelType::Tuple(nts) | DataModelType::TupleStruct(nts) => {
            let mut out = [None; MAX];
            let mut i = 0;
            let mut outidx = 0;

            // For each type in the tuple...
            while i < nts.len() {
                // Get the types used by this field
                let (arr, used) = type_chewer_nty::<MAX>(nts[i]);
                let mut j = 0;
                // For each type in this field...
                while j < used {
                    let Some(ty) = arr[j] else { panic!() };
                    let mut k = 0;
                    let mut found = is_prim(ty.ty);
                    // Check against all currently known tys
                    while !found && k < outidx {
                        let Some(kty) = out[k] else { panic!() };
                        found |= nty_eq(kty, ty);
                        k += 1;
                    }
                    if !found {
                        out[outidx] = Some(ty);
                        outidx += 1;
                    }
                    j += 1;
                }
                i += 1;
            }
            (out, outidx)
        }
        DataModelType::Map { key, val } => {
            let mut out = [None; MAX];
            let mut outidx = 0;

            // Do key
            let (arr, used) = type_chewer_nty::<MAX>(key);
            let mut j = 0;
            while j < used {
                let Some(ty) = arr[j] else { panic!() };
                let mut k = 0;
                let mut found = is_prim(ty.ty);
                // Check against all currently known tys
                while !found && k < outidx {
                    let Some(kty) = out[k] else { panic!() };
                    found |= nty_eq(kty, ty);
                    k += 1;
                }
                if !found {
                    out[outidx] = Some(ty);
                    outidx += 1;
                }
                j += 1;
            }

            // Then do val
            let (arr, used) = type_chewer_nty::<MAX>(val);
            let mut j = 0;
            while j < used {
                let Some(ty) = arr[j] else { panic!() };
                let mut k = 0;
                let mut found = is_prim(ty.ty);
                // Check against all currently known tys
                while !found && k < outidx {
                    let Some(kty) = out[k] else { panic!() };
                    found |= nty_eq(kty, ty);
                    k += 1;
                }
                if !found {
                    out[outidx] = Some(ty);
                    outidx += 1;
                }
                j += 1;
            }

            (out, outidx)
        }
        DataModelType::Struct(nvals) => {
            let mut out = [None; MAX];
            let mut i = 0;
            let mut outidx = 0;

            // For each type in the tuple...
            while i < nvals.len() {
                // Get the types used by this field
                let (arr, used) = type_chewer_nty::<MAX>(nvals[i].ty);
                let mut j = 0;
                // For each type in this field...
                while j < used {
                    let Some(ty) = arr[j] else { panic!() };
                    let mut k = 0;
                    let mut found = is_prim(ty.ty);
                    // Check against all currently known tys
                    while !found && k < outidx {
                        let Some(kty) = out[k] else { panic!() };
                        found |= nty_eq(kty, ty);
                        k += 1;
                    }
                    if !found {
                        out[outidx] = Some(ty);
                        outidx += 1;
                    }
                    j += 1;
                }
                i += 1;
            }
            (out, outidx)
        }
        DataModelType::Enum(nvars) => {
            let mut out = [None; MAX];
            let mut i = 0;
            let mut outidx = 0;

            // For each type in the variant...
            while i < nvars.len() {
                match nvars[i].ty {
                    DataModelVariant::UnitVariant => {}
                    DataModelVariant::NewtypeVariant(nt) => {
                        let mut k = 0;
                        let mut found = is_prim(nt.ty);
                        // Check against all currently known tys
                        while !found && k < outidx {
                            let Some(kty) = out[k] else { panic!() };
                            found |= nty_eq(kty, nt);
                            k += 1;
                        }
                        if !found {
                            out[outidx] = Some(nt);
                            outidx += 1;
                        }
                    }
                    DataModelVariant::TupleVariant(nts) => {
                        let mut x = 0;

                        // For each type in the tuple...
                        while x < nts.len() {
                            // Get the types used by this field
                            let (arr, used) = type_chewer_nty::<MAX>(nts[x]);
                            let mut j = 0;
                            // For each type in this field...
                            while j < used {
                                let Some(ty) = arr[j] else { panic!() };
                                let mut k = 0;
                                let mut found = is_prim(ty.ty);
                                // Check against all currently known tys
                                while !found && k < outidx {
                                    let Some(kty) = out[k] else { panic!() };
                                    found |= nty_eq(kty, ty);
                                    k += 1;
                                }
                                if !found {
                                    out[outidx] = Some(ty);
                                    outidx += 1;
                                }
                                j += 1;
                            }
                            x += 1;
                        }
                    }
                    DataModelVariant::StructVariant(nvals) => {
                        let mut x = 0;

                        // For each type in the struct...
                        while x < nvals.len() {
                            // Get the types used by this field
                            let (arr, used) = type_chewer_nty::<MAX>(nvals[x].ty);
                            let mut j = 0;
                            // For each type in this field...
                            while j < used {
                                let Some(ty) = arr[j] else { panic!() };
                                let mut k = 0;
                                let mut found = is_prim(ty.ty);
                                // Check against all currently known tys
                                while !found && k < outidx {
                                    let Some(kty) = out[k] else { panic!() };
                                    found |= nty_eq(kty, ty);
                                    k += 1;
                                }
                                if !found {
                                    out[outidx] = Some(ty);
                                    outidx += 1;
                                }
                                j += 1;
                            }
                            x += 1;
                        }
                    }
                }
                i += 1;
            }
            (out, outidx)
        }
    }
}

//////////////////////////////////////////////////////////////////////////////
// STAGE 4 - REDUCTION TO CORRECT SIZE
//////////////////////////////////////////////////////////////////////////////

/// This function reduces a `&[Option<&NamedType>]` to a `[&NamedType; A]`.
///
/// The parameter `A` should be calculated by [`type_chewer_nty()`].
///
/// We also validate that all items >= idx `A` are in fact None.
pub const fn cruncher<const A: usize>(
    opts: &[Option<&'static NamedType>],
) -> [&'static NamedType; A] {
    let mut out = [<() as Schema>::SCHEMA; A];
    let mut i = 0;
    while i < A {
        let Some(ty) = opts[i] else { panic!() };
        out[i] = ty;
        i += 1;
    }
    while i < opts.len() {
        assert!(opts[i].is_none());
        i += 1;
    }
    out
}

//////////////////////////////////////////////////////////////////////////////
// STAGE 1-5 (macro op)
//////////////////////////////////////////////////////////////////////////////

/// `unique_types` collects all unique, non-primitive types contained by the given
/// single type. It can be used with any type that implements the [`Schema`] trait,
/// and returns a `&'static [&'static NamedType]`.
#[macro_export]
macro_rules! unique_types {
    ($t:ty) => {
        const {
            const MAX_TYS: usize =
                $crate::uniques::unique_types_nty_upper(<$t as postcard_schema::Schema>::SCHEMA);
            const BIG_RPT: (
                [Option<&'static postcard_schema::schema::NamedType>; MAX_TYS],
                usize,
            ) = $crate::uniques::type_chewer_nty(<$t as postcard_schema::Schema>::SCHEMA);
            const SMALL_RPT: [&'static postcard_schema::schema::NamedType; BIG_RPT.1] =
                $crate::uniques::cruncher(BIG_RPT.0.as_slice());
            SMALL_RPT.as_slice()
        }
    };
}

//////////////////////////////////////////////////////////////////////////////
// STAGE 6 - COLLECTION OF UNIQUES ACROSS MULTIPLE TYPES
//////////////////////////////////////////////////////////////////////////////

/// This function turns an array of type lists into a single list of unique types
///
/// The type parameter `M` is the maximum potential output size, it should be
/// equal to `lists.iter().map(|l| l.len()).sum()`, and should generally be
/// calculated as part of [`merge_unique_types!()`][crate::merge_unique_types].
pub const fn merge_nty_lists<const M: usize>(
    lists: &[&[&'static NamedType]],
) -> ([Option<&'static NamedType>; M], usize) {
    let mut out: [Option<&NamedType>; M] = [None; M];
    let mut out_ct = 0;
    let mut i = 0;

    while i < lists.len() {
        let mut j = 0;
        let list = lists[i];
        while j < list.len() {
            let item = list[j];
            let mut k = 0;
            let mut found = is_prim(item.ty);
            while !found && k < out_ct {
                let Some(oitem) = out[k] else { panic!() };
                if nty_eq(item, oitem) {
                    found = true;
                }
                k += 1;
            }
            if !found {
                out[out_ct] = Some(item);
                out_ct += 1;
            }
            j += 1;
        }
        i += 1;
    }

    (out, out_ct)
}

//////////////////////////////////////////////////////////////////////////////
// STAGE 6-9 (macro op)
//////////////////////////////////////////////////////////////////////////////

/// Get the sum of the length of all arrays
pub const fn total_len<T>(arrs: &[&[T]]) -> usize {
    let mut i = 0;
    let mut ct = 0;
    while i < arrs.len() {
        ct += arrs[i].len();
        i += 1;
    }
    ct
}

/// ,
pub const fn combine_with_copy<T: Sized + Copy, const N: usize>(arrs: &[&[T]], init: T) -> [T; N] {
    let mut out = [init; N];
    let mut outidx = 0;
    let mut i = 0;
    while i < arrs.len() {
        let mut j = 0;
        while j < arrs[i].len() {
            out[outidx] = arrs[i][j];
            outidx += 1;
            j += 1;
        }
        i += 1;
    }

    assert!(outidx == N);

    out
}

/// `merge_unique_types` collects all unique, non-primitive types contained by
/// the given comma separated types. It can be used with any types that implement
/// the [`Schema`] trait, and returns a `&'static [&'static NamedType]`.
#[macro_export]
macro_rules! merge_unique_types {
    ($($t:ty,)*) => {
        const {
            const LISTS: &[&[&'static postcard_schema::schema::NamedType]] = &[
                $(
                    $crate::unique_types!($t),
                )*
            ];
            const TTL_COUNT: usize = $crate::uniques::total_len(LISTS);
            const BIG_RPT: ([Option<&'static postcard_schema::schema::NamedType>; TTL_COUNT], usize) = $crate::uniques::merge_nty_lists(LISTS);
            const SMALL_RPT: [&'static postcard_schema::schema::NamedType; BIG_RPT.1] = $crate::uniques::cruncher(BIG_RPT.0.as_slice());
            SMALL_RPT.as_slice()
        }
    }
}

#[cfg(test)]
mod test {
    #![allow(dead_code)]
    use postcard_schema::{
        schema::{owned::OwnedNamedType, NamedType},
        Schema,
    };

    use crate::uniques::{
        is_prim, type_chewer_dmt, type_chewer_nty, unique_types_dmt_upper, unique_types_nty_upper,
    };

    #[derive(Schema)]
    struct Example0;

    #[derive(Schema)]
    struct ExampleA {
        a: u32,
    }

    #[derive(Schema)]
    struct Example1 {
        a: u32,
        b: Option<u16>,
    }

    #[derive(Schema)]
    struct Example2 {
        x: i32,
        y: Option<i16>,
        c: Example1,
    }

    #[derive(Schema)]
    struct Example3 {
        a: u32,
        b: Option<u16>,
        c: Example2,
        d: Example2,
        e: Example2,
    }

    #[derive(Schema)]
    enum Example4 {
        A,
        B(String),
        C(u32, u64),
        D { x: i8, y: i16, z: i32, a: i64 },
    }

    #[test]
    fn subpar_arrs() {
        const MAXARR: usize = unique_types_nty_upper(<[Example0; 32]>::SCHEMA);
        // I don't *like* this, it really should be 2. Leaving it as a test so
        // I can remember that it's here. See TODO on unique_types_dmt_upper.
        assert_eq!(MAXARR, 33);
    }

    #[test]
    fn uniqlo() {
        const MAX0: usize = unique_types_nty_upper(Example0::SCHEMA);
        const MAXA: usize = unique_types_nty_upper(ExampleA::SCHEMA);
        const MAX1: usize = unique_types_nty_upper(Example1::SCHEMA);
        const MAX2: usize = unique_types_nty_upper(Example2::SCHEMA);
        const MAX3: usize = unique_types_nty_upper(Example3::SCHEMA);
        const MAX4: usize = unique_types_nty_upper(Example4::SCHEMA);
        assert_eq!(MAX0, 1);
        assert_eq!(MAXA, 1);
        assert_eq!(MAX1, 2);
        assert_eq!(MAX2, 4);
        assert_eq!(MAX3, 14);
        assert_eq!(MAX4, 1);

        println!();
        println!("Example0");
        let (arr0, used): ([Option<_>; MAX0], usize) = type_chewer_nty(Example0::SCHEMA);
        assert_eq!(used, 1);
        println!("max: {MAX0} used: {used}");
        for a in arr0 {
            match a {
                Some(a) => println!("Some({})", OwnedNamedType::from(a)),
                None => println!("None"),
            }
        }

        println!();
        println!("ExampleA");
        let (arra, used): ([Option<_>; MAXA], usize) = type_chewer_nty(ExampleA::SCHEMA);
        assert_eq!(used, 1);
        println!("max: {MAXA} used: {used}");
        for a in arra {
            match a {
                Some(a) => println!("Some({})", OwnedNamedType::from(a)),
                None => println!("None"),
            }
        }

        println!();
        println!("Option<u16>");
        let (arr1, used): (
            [Option<_>; unique_types_nty_upper(Option::<u16>::SCHEMA)],
            usize,
        ) = type_chewer_nty(Option::<u16>::SCHEMA);
        assert_eq!(used, 1);
        println!(
            "max: {} used: {used}",
            unique_types_nty_upper(Option::<u16>::SCHEMA)
        );
        for a in arr1 {
            match a {
                Some(a) => println!("Some({})", OwnedNamedType::from(a)),
                None => println!("None"),
            }
        }

        println!();
        println!("Example1");
        let (arr1, used): ([Option<_>; MAX1], usize) = type_chewer_nty(Example1::SCHEMA);
        assert!(!is_prim(Example1::SCHEMA.ty));
        let child_ct = unique_types_dmt_upper(Example1::SCHEMA.ty);
        assert_eq!(child_ct, 1);
        assert_eq!(used, 2);
        println!("max: {MAX1} used: {used}");
        for a in arr1 {
            match a {
                Some(a) => println!("Some({})", OwnedNamedType::from(a)),
                None => println!("None"),
            }
        }

        println!();
        println!("Example2");
        let (arr2, used): ([Option<_>; MAX2], usize) = type_chewer_nty(Example2::SCHEMA);
        println!("max: {MAX2} used: {used}");
        for a in arr2 {
            match a {
                Some(a) => println!("Some({})", OwnedNamedType::from(a)),
                None => println!("None"),
            }
        }

        println!();
        println!("Example3");
        let (arr3, used): ([Option<_>; MAX3], usize) = type_chewer_nty(Example3::SCHEMA);
        println!("max: {MAX3} used: {used}");
        for a in arr3 {
            match a {
                Some(a) => println!("Some({})", OwnedNamedType::from(a)),
                None => println!("None"),
            }
        }

        println!();
        let x = type_chewer_dmt::<MAX4>(Example4::SCHEMA.ty);
        println!("Example4 {MAX4} {} {:?}", x.1, x.0);
        println!("{}", OwnedNamedType::from(Example4::SCHEMA));
        let (arr4, used): ([Option<_>; MAX4], usize) = type_chewer_nty(Example4::SCHEMA);
        println!("max: {MAX3} used: {used}");
        for a in arr4 {
            match a {
                Some(a) => println!("Some({})", OwnedNamedType::from(a)),
                None => println!("None"),
            }
        }

        println!();
        let rpt0 = unique_types!(Example0);
        println!("{}", rpt0.len());
        for a in rpt0 {
            println!("{}", OwnedNamedType::from(*a))
        }

        println!();
        let rpta = unique_types!(ExampleA);
        println!("{}", rpta.len());
        for a in rpta {
            println!("{}", OwnedNamedType::from(*a))
        }

        println!();
        let rpt1 = unique_types!(Example1);
        println!("{}", rpt1.len());
        for a in rpt1 {
            println!("{}", OwnedNamedType::from(*a))
        }

        println!();
        let rpt2 = unique_types!(Example2);
        println!("{}", rpt2.len());
        for a in rpt2 {
            println!("{}", OwnedNamedType::from(*a))
        }

        println!();
        let rpt3 = unique_types!(Example3);
        println!("{}", rpt3.len());
        for a in rpt3 {
            println!("{}", OwnedNamedType::from(*a))
        }

        println!();
        const MERGED: &[&NamedType] = merge_unique_types![Example3, ExampleA, Example0,];
        println!("{}", MERGED.len());
        for a in MERGED {
            println!("{}", OwnedNamedType::from(*a))
        }

        println!();
        println!();
        println!();
        println!();

        // panic!("test passed but I want to see the data");
    }
}