fn mod_mul_(a: u64, b: u64, m: u64) -> u64 {
(u128::from(a) * u128::from(b) % u128::from(m)) as u64
}
fn mod_mul(a: u64, b: u64, m: u64) -> u64 {
match a.checked_mul(b) {
Some(r) => if r >= m { r % m } else { r },
None => mod_mul_(a, b, m),
}
}
fn mod_sqr(a: u64, m: u64) -> u64 {
if a < (1 << 32) {
let r = a * a;
if r >= m {
r % m
} else {
r
}
} else {
mod_mul_(a, a, m)
}
}
fn mod_exp(mut x: u64, mut d: u64, n: u64) -> u64 {
let mut ret: u64 = 1;
while d != 0 {
if d % 2 == 1 {
ret = mod_mul(ret, x, n)
}
d /= 2;
x = mod_sqr(x, n);
}
ret
}
pub fn miller_rabin(n: u64) -> bool {
const HINT: &[u64] = &[2];
const WITNESSES: &[(u64, &[u64])] = &[
(2_046, HINT),
(1_373_652, &[2, 3]),
(9_080_190, &[31, 73]),
(25_326_000, &[2, 3, 5]),
(4_759_123_140, &[2, 7, 61]),
(1_112_004_669_632, &[2, 13, 23, 1662803]),
(2_152_302_898_746, &[2, 3, 5, 7, 11]),
(3_474_749_660_382, &[2, 3, 5, 7, 11, 13]),
(341_550_071_728_320, &[2, 3, 5, 7, 11, 13, 17]),
(3_825_123_056_546_413_050, &[2, 3, 5, 7, 11, 13, 17, 19, 23]),
(std::u64::MAX, &[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]),
];
if n % 2 == 0 { return n == 2 }
if n == 1 { return false }
let mut d = n - 1;
let mut s = 0;
while d % 2 == 0 { d /= 2; s += 1 }
let witnesses =
WITNESSES.iter().find(|&&(hi, _)| hi >= n)
.map(|&(_, wtnss)| wtnss).unwrap();
'next_witness: for &a in witnesses.iter() {
let mut power = mod_exp(a, d, n);
assert!(power < n);
if power == 1 || power == n - 1 { continue 'next_witness }
for _r in 0..s {
power = mod_sqr(power, n);
assert!(power < n);
if power == 1 { return false }
if power == n - 1 {
continue 'next_witness
}
}
return false
}
true
}
#[cfg(test)]
mod tests {
use primal::Sieve;
#[test]
fn mod_mul() {
assert_eq!(super::mod_mul(1 << 63, 1 << 32, 3), 2);
assert_eq!(super::mod_mul(1 << 31, 1 << 31, (1 << 32) - 7), 3221225479);
assert_eq!(super::mod_mul(1 << 32, 1 << 32, (1 << 32) - 7), 49);
assert_eq!(super::mod_mul(1 << 32, 1 << 32, (1 << 32) + 7), 49);
assert_eq!(super::mod_mul(1 << 63, 1 << 32, (1 << 32) + 7), 2_147_483_480);
assert_eq!(super::mod_mul(1 << 63, 1 << 32, (1 << 63) + 7), 9_223_372_006_790_004_743);
assert_eq!(super::mod_mul(1 << 32, 1 << 32, !0), 1);
}
#[test]
fn miller_rabin() {
const LIMIT: usize = 1_000_000;
let sieve = Sieve::new(LIMIT);
for x in 0..LIMIT {
let s = sieve.is_prime(x);
let mr = super::miller_rabin(x as u64);
assert!(s == mr, "miller_rabin {} mismatches sieve {} for {}",
mr, s, x)
}
}
#[test]
fn miller_rabin_large() {
let tests = &[
(4_294_967_311, true),
(4_294_967_291, true),
(4_294_967_291 * 4_294_967_291, false),
(!0, false),
];
for &(n, is_prime) in tests {
assert!(super::miller_rabin(n) == is_prime,
"mismatch for {} (should be {})", n, is_prime);
}
}
#[test]
fn oeis_a014233() {
const A014233: [u64; 9] = [
2047,
1373653,
25326001,
3215031751,
2152302898747,
3474749660383,
341550071728321,
341550071728321,
3825123056546413051,
];
for &n in &A014233 {
assert!(!super::miller_rabin(n), "{} is composite!", n);
}
}
}