1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
//! Estimate upper and lower bounds for the *n*-th prime, and π(*n*),
//! the number of primes less than or equal to *n*.
//!
//! This is designed to be used via the `primal` crate.
#[allow(dead_code)]
mod tables;
/// Returns estimated bounds for π(*n*), the number of primes less
/// than or equal to `n`.
///
/// That is, if (*a*, *b*) = `estimate_prime_pi(n)`, *a* ≤ π(*n*) ≤
/// *b*. The bounds used are proved in \[1], \[2, Théorème 1.10]
/// (both summarised in \[2, pp. 14–15]), and \[3, Section 6.2].
///
/// \[1]: Barkley Rosser. "Explicit Bounds for Some Functions of Prime
/// Numbers". American Journal of Mathematics 63 (1):
/// 211–232. 1941. doi:[10.2307/2371291](http://dx.doi.org/10.2307/2371291).
///
/// \[2]: Dusart, Pierre. ["Autour de la fonction qui compte le nombre
/// de nombres premiers."][pdf] PhD diss., Université de Limoges,
/// 1998\.
///
/// [pdf]: http://www.unilim.fr/laco/theses/1998/T1998_01.html
///
/// \[3]: Dusart, Pierre. "Estimates of Some Functions Over Primes
/// without R.H."
/// ArXiv:[1002.0442](http://arxiv.org/abs/1002.0442). 2010.
///
/// # Examples
///
/// ```rust
/// // the number of primes below 1e9
/// let count_billion = 50_847_534;
///
/// let (low, high) = primal::estimate_prime_pi(1_000_000_000);
/// // check the bounds are satisfied
/// assert!(low <= count_billion && count_billion <= high);
/// ```
pub fn prime_pi(n: u64) -> (u64, u64) {
if n < tables::SMALL_PRIME_PI.len() as u64 {
let x = tables::SMALL_PRIME_PI[n as usize] as u64;
(x, x)
} else {
let n_ = n as f64;
let lg = n_.ln();
let inv_lg = 1.0 / lg;
let n_inv_lg = n_ * inv_lg;
let lo = match () {
// [3] Theorem 6.9 (6.7)
_ if n >= 88783_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 2.0 * inv_lg)),
// [2] Theorem 1.10 (6.)
_ if n >= 32299_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 1.8 * inv_lg)),
// [2] Theorem 1.10 (5.)
_ if n >= 5393_u64 => n_ / (lg - 1.0),
// [2] Theorem 1.10 (1.)
_ if n >= 599_u64 => n_inv_lg * (1.0 + inv_lg),
// [1]
_ => n_ / (lg + 2.0),
};
let hi = match () {
// [3] Theorem 6.9 (6.7)
_ if n >= 16537307828_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 2.334 * inv_lg)),
// [2] Theorem 1.10 (3.)
_ if n >= 13220000000_u64 => n_inv_lg * (1.0 + 1.0992 * inv_lg),
// [3] Theorem 6.9 (6.7)
_ if n >= 2953652287_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 2.334 * inv_lg)),
// [2] Theorem 1.10 (3.)
_ if n >= 355991_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 2.51 * inv_lg)),
// [2] Theorem 1.10 (4.)
_ if n >= 60184_u64 => n_ / (lg - 1.1),
// [2] Theorem 1.10 (2.)
_ => n_inv_lg * (1.0 + 1.2762 * inv_lg),
};
(lo as u64, hi as u64)
}
}
/// Gives estimated bounds for *p<sub>n</sub>*, the `n`th prime number,
/// 1-indexed (i.e. *p<sub>1</sub>* = 2, *p<sub>2</sub>* = 3).
///
/// That is, if (<i>a</i>,<i>b</i>) = `estimate_nth_prime(n)`, *a* ≤
/// *p<sub>n</sub>* ≤ *b*. The bounds used are proved in \[1], \[2,
/// Théorèmes 1.6–1.8] (both summarised in \[2, pp. 14–15]) and \[3,
/// Section 6.1.2].
///
/// \[1]: Massias, Jean-Pierre; Robin, Guy. ["Bornes effectives pour
/// certaines fonctions concernant les nombres
/// premiers."](http://eudml.org/doc/247826) Journal de théorie des
/// nombres de Bordeaux 8.1 (1996): 215-242.
///
/// \[2]: Dusart, Pierre. ["Autour de la fonction qui compte le nombre
/// de nombres premiers."][pdf] PhD diss., Université de Limoges,
/// 1998\.
///
/// [pdf]: http://www.unilim.fr/laco/theses/1998/T1998_01.html
///
/// \[3]: Dusart, Pierre. "Estimates of Some Functions Over Primes
/// without R.H."
/// ArXiv:[1002.0442](http://arxiv.org/abs/1002.0442). 2010.
///
/// # Examples
///
/// ```rust
/// // the 1e9-th prime
/// let billionth = 22_801_763_489;
///
/// let (low, high) = primal::estimate_nth_prime(1_000_000_000);
/// // check the bounds are satisfied
/// assert!(low <= billionth && billionth <= high);
/// ```
pub fn nth_prime(n: u64) -> (u64, u64) {
const MAX_VALID_INPUT: u64 = 425281711831682432;
assert!(n <= MAX_VALID_INPUT, "nth_prime({}) overflows a u64", n);
if n == 0 {
(0, 0)
} else if n <= tables::SMALL_PRIMES.len() as u64 {
// table is 0-indexed, n is 1-indexed, need to adjust.
let x = tables::SMALL_PRIMES[n as usize - 1] as u64;
(x, x)
} else {
let n_ = n as f64;
let lg = n_.ln();
let lglg = lg.ln();
let lo = match () {
// [2] Theorem 1.6
_ if n >= 3520_u64 => n_ * (lg + lglg - 1.0 + (lglg - 2.1) / lg),
// [1] Theorem A (ii)
_ => n_ * (lg + lglg - 1.0),
};
let hi = match () {
// [3] Proposition 6.6
_ if n >= 688383_u64 => n_ * (lg + lglg - 1.0 + (lglg - 2.0) / lg),
// [3] Lemma 6.5
_ if n >= 178974_u64 => n_ * (lg + lglg - 1.0 + (lglg - 1.95) / lg),
// [2] Theorem 1.8
_ if n >= 39017_u64 => n_ * (lg + lglg - 0.9484),
// [2] Theorem 1.7
_ if n >= 27076_u64 => n_ * (lg + lglg - 1.0 + (lglg - 1.8) / lg),
// [1] Theorem A (v)
_ if n >= 15985_u64 => n_ * (lg + lglg - 0.9427),
// [1] Theorem A (v)
_ if n >= 13_u64 => n_ * (lg + lglg - 1.0 + 1.8 * lglg / lg),
// [1] Theorem A (iv)
_ => n_ * (lg + lglg),
};
(lo as u64, hi as u64)
}
}
#[cfg(test)]
mod tests {
use primal::Sieve;
#[test]
fn prime_pi() {
fn check(n: u64, pi: u64) {
let (lo, hi) = super::prime_pi(n);
assert!(lo <= pi && pi <= hi,
"found failing estimate at {}, should satisfy: {} <= {} <= {}",
n, lo, pi, hi)
}
let primes = Sieve::new(1_000_000);
let mut last = 0;
for (i, p) in primes.primes_from(0).enumerate() {
for j in last..p {
check(j as u64, i as u64);
}
last = p;
}
let sporadic = [
(1, 4),
(2, 25),
(3, 168),
(4, 1229),
(5, 9592),
(6, 78498),
(7, 664579),
(8, 5761455),
(9, 50847534),
(10, 455052511),
(11, 4118054813),
(12, 37607912018),
(13, 346065536839),
(14, 3204941750802),
(15, 29844570422669),
(16, 279238341033925),
(17, 2623557157654233),
];
for &(exponent, real) in sporadic.iter() {
let n = 10u64.pow(exponent);
check(n, real);
}
}
#[test]
fn nth_prime() {
fn check(n: u64, p: u64) {
let (lo, hi) = super::nth_prime(n);
assert!(lo <= p && p <= hi,
"found failing estimate at {}, should satisfy: {} <= {} <= {}",
n, lo, p, hi);
}
let sieve = Sieve::new(1_000_000);
for (i, p) in sieve.primes_from(0).enumerate() {
let n = i as u64 + 1;
check(n, p as u64);
}
let sporadic = [
(0, 2),
(1, 29),
(2, 541),
(3, 7919),
(4, 104729),
(5, 1299709),
(6, 15485863),
(7, 179424673),
(8, 2038074743),
(9, 22801763489),
(10, 252097800623),
(11, 2760727302517),
(12, 29996224275833),
(13, 323780508946331),
(14, 3475385758524527),
(15, 37124508045065437),
];
for &(exponent, nth_prime) in sporadic.iter() {
let n = 10u64.pow(exponent);
check(n, nth_prime);
}
}
}