1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! Estimate upper and lower bounds for the *n*-th prime, and π(*n*),
//! the number of primes less than or equal to *n*.
//!
//! This is designed to be used via the `primal` crate.

#[allow(dead_code)]
mod tables;

/// Returns estimated bounds for π(*n*), the number of primes less
/// than or equal to `n`.
///
/// That is, if (*a*, *b*) = `estimate_prime_pi(n)`, *a* ≤ π(*n*) ≤
/// *b*. The bounds used are proved in \[1], \[2, Théorème 1.10]
/// (both summarised in \[2, pp. 14–15]), and \[3, Section 6.2].
///
/// \[1]: Barkley Rosser. "Explicit Bounds for Some Functions of Prime
/// Numbers". American Journal of Mathematics 63 (1):
/// 211–232. 1941. doi:[10.2307/2371291](http://dx.doi.org/10.2307/2371291).
///
/// \[2]: Dusart, Pierre. ["Autour de la fonction qui compte le nombre
/// de nombres premiers."][pdf] PhD diss., Université de Limoges,
/// 1998\.
///
/// [pdf]: http://www.unilim.fr/laco/theses/1998/T1998_01.html
///
/// \[3]: Dusart, Pierre. "Estimates of Some Functions Over Primes
/// without R.H."
/// ArXiv:[1002.0442](http://arxiv.org/abs/1002.0442). 2010.
///
/// # Examples
///
/// ```rust
/// // the number of primes below 1e9
/// let count_billion = 50_847_534;
///
/// let (low, high) = primal::estimate_prime_pi(1_000_000_000);
/// // check the bounds are satisfied
/// assert!(low <= count_billion && count_billion <= high);
/// ```
pub fn prime_pi(n: u64) -> (u64, u64) {
    if n < tables::SMALL_PRIME_PI.len() as u64 {
        let x = tables::SMALL_PRIME_PI[n as usize] as u64;
        (x, x)
    } else {
        let n_ = n as f64;
        let lg = n_.ln();
        let inv_lg = 1.0 / lg;
        let n_inv_lg = n_ * inv_lg;

        let lo = match () {
            // [3] Theorem 6.9 (6.7)
            _ if n >= 88783_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 2.0 * inv_lg)),
            // [2] Theorem 1.10 (6.)
            _ if n >= 32299_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 1.8 * inv_lg)),
            // [2] Theorem 1.10 (5.)
            _ if n >= 5393_u64 => n_ / (lg - 1.0),
            // [2] Theorem 1.10 (1.)
            _ if n >= 599_u64 => n_inv_lg * (1.0 + inv_lg),
            // [1]
            _ => n_ / (lg + 2.0),
        };

        let hi = match () {
            // [3] Theorem 6.9 (6.7)
            _ if n >= 16537307828_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 2.334 * inv_lg)),
            // [2] Theorem 1.10 (3.)
            _ if n >= 13220000000_u64 => n_inv_lg * (1.0 + 1.0992 * inv_lg),
            // [3] Theorem 6.9 (6.7)
            _ if n >= 2953652287_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 2.334 * inv_lg)),
            // [2] Theorem 1.10 (3.)
            _ if n >= 355991_u64 => n_inv_lg * (1.0 + inv_lg * (1.0 + 2.51 * inv_lg)),
            // [2] Theorem 1.10 (4.)
            _ if n >= 60184_u64 => n_ / (lg - 1.1),
            // [2] Theorem 1.10 (2.)
            _ => n_inv_lg * (1.0 + 1.2762 * inv_lg),
        };

        (lo as u64, hi as u64)
    }
}

/// Gives estimated bounds for *p<sub>n</sub>*, the `n`th prime number,
/// 1-indexed (i.e. *p<sub>1</sub>* = 2, *p<sub>2</sub>* = 3).
///
/// That is, if (<i>a</i>,<i>b</i>) = `estimate_nth_prime(n)`, *a* ≤
/// *p<sub>n</sub>* ≤ *b*. The bounds used are proved in \[1], \[2,
/// Théorèmes 1.6–1.8] (both summarised in \[2, pp. 14–15]) and \[3,
/// Section 6.1.2].
///
/// \[1]: Massias, Jean-Pierre; Robin, Guy. ["Bornes effectives pour
/// certaines fonctions concernant les nombres
/// premiers."](http://eudml.org/doc/247826) Journal de théorie des
/// nombres de Bordeaux 8.1 (1996): 215-242.
///
/// \[2]: Dusart, Pierre. ["Autour de la fonction qui compte le nombre
/// de nombres premiers."][pdf] PhD diss., Université de Limoges,
/// 1998\.
///
/// [pdf]: http://www.unilim.fr/laco/theses/1998/T1998_01.html
///
/// \[3]: Dusart, Pierre. "Estimates of Some Functions Over Primes
/// without R.H."
/// ArXiv:[1002.0442](http://arxiv.org/abs/1002.0442). 2010.
///
/// # Examples
///
/// ```rust
/// // the 1e9-th prime
/// let billionth = 22_801_763_489;
///
/// let (low, high) = primal::estimate_nth_prime(1_000_000_000);
/// // check the bounds are satisfied
/// assert!(low <= billionth && billionth <= high);
/// ```
pub fn nth_prime(n: u64) -> (u64, u64) {
    const MAX_VALID_INPUT: u64 = 425281711831682432;
    assert!(n <= MAX_VALID_INPUT, "nth_prime({}) overflows a u64", n);

    if n == 0 {
        (0, 0)
    } else if n <= tables::SMALL_PRIMES.len() as u64 {
        // table is 0-indexed, n is 1-indexed, need to adjust.
        let x = tables::SMALL_PRIMES[n as usize - 1] as u64;
        (x, x)
    } else {
        let n_ = n as f64;
        let lg = n_.ln();
        let lglg = lg.ln();

        let lo = match () {
            // [2] Theorem 1.6
            _ if n >= 3520_u64 => n_ * (lg + lglg - 1.0 + (lglg - 2.1) / lg),
            // [1] Theorem A (ii)
            _ => n_ * (lg + lglg - 1.0),
        };

        let hi = match () {
            // [3] Proposition 6.6
            _ if n >= 688383_u64 => n_ * (lg + lglg - 1.0 + (lglg - 2.0) / lg),
            // [3] Lemma 6.5
            _ if n >= 178974_u64 => n_ * (lg + lglg - 1.0 + (lglg - 1.95) / lg),
            // [2] Theorem 1.8
            _ if n >= 39017_u64 => n_ * (lg + lglg - 0.9484),
            // [2] Theorem 1.7
            _ if n >= 27076_u64 => n_ * (lg + lglg - 1.0 + (lglg - 1.8) / lg),
            // [1] Theorem A (v)
            _ if n >= 15985_u64 => n_ * (lg + lglg - 0.9427),
            // [1] Theorem A (v)
            _ if n >= 13_u64 => n_ * (lg + lglg - 1.0 + 1.8 * lglg / lg),
            // [1] Theorem A (iv)
            _ => n_ * (lg + lglg),
        };
        (lo as u64, hi as u64)
    }
}

#[cfg(test)]
mod tests {
    use primal::Sieve;

    #[test]
    fn prime_pi() {
        fn check(n: u64, pi: u64) {
            let (lo, hi) = super::prime_pi(n);
            assert!(lo <= pi && pi <= hi,
                    "found failing estimate at {}, should satisfy: {} <= {} <= {}",
                    n, lo, pi, hi)
        }
        let primes = Sieve::new(1_000_000);

        let mut last = 0;
        for (i, p) in primes.primes_from(0).enumerate() {
            for j in last..p {
                check(j as u64, i as u64);
            }
            last = p;
        }

        let sporadic = [
            (1, 4),
            (2, 25),
            (3, 168),
            (4, 1229),
            (5, 9592),
            (6, 78498),
            (7, 664579),
            (8, 5761455),
            (9, 50847534),
            (10, 455052511),
            (11, 4118054813),
            (12, 37607912018),
            (13, 346065536839),
            (14, 3204941750802),
            (15, 29844570422669),
            (16, 279238341033925),
            (17, 2623557157654233),
            ];
        for &(exponent, real) in sporadic.iter() {
            let n = 10u64.pow(exponent);
            check(n, real);
        }
    }

    #[test]
    fn nth_prime() {
        fn check(n: u64, p: u64) {
            let (lo, hi) = super::nth_prime(n);
            assert!(lo <= p && p <= hi,
                    "found failing estimate at {}, should satisfy: {} <= {} <= {}",
                    n, lo, p, hi);
        }
        let sieve = Sieve::new(1_000_000);

        for (i, p) in sieve.primes_from(0).enumerate() {
            let n = i as u64 + 1;
            check(n, p as u64);
        }

        let sporadic = [
            (0, 2),
            (1, 29),
            (2, 541),
            (3, 7919),
            (4, 104729),
            (5, 1299709),
            (6, 15485863),
            (7, 179424673),
            (8, 2038074743),
            (9, 22801763489),
            (10, 252097800623),
            (11, 2760727302517),
            (12, 29996224275833),
            (13, 323780508946331),
            (14, 3475385758524527),
            (15, 37124508045065437),
            ];

        for &(exponent, nth_prime) in sporadic.iter() {
            let n = 10u64.pow(exponent);
            check(n, nth_prime);
        }
    }
}