1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
use primal_bit::BitVec;
use crate::wheel;
use crate::streaming::StreamingSieve;
use std::cmp;
use std::slice;
type SmallVec1<T> = ::smallvec::SmallVec<[T; 1]>;
/// A heavily optimised prime sieve.
///
/// This stores information about primes up to some specified limit,
/// allowing efficient queries of information about them. This caches
/// the successive outputs of `StreamingSieve` and has very similar
/// performance, modulo the differences in memory use: to cache the
/// information `Sieve` uses approximately `limit / 30 +
/// O(sqrt(limit))` bytes of memory. Consider directly using
/// `StreamingSieve` if repeated queries are unnecessary, since that
/// uses only `O(sqrt(limit))` bytes.
///
/// # Examples
///
/// ```rust
/// let sieve = primal::Sieve::new(10_000_000);
/// assert_eq!(sieve.prime_pi(123456), 11601);
///
/// assert!(sieve.is_prime(6395047));
/// assert!(!sieve.is_prime(6395048));
/// ```
#[derive(Debug)]
pub struct Sieve {
seg_bits: usize,
nbits: usize,
seen: SmallVec1<Item>,
}
#[derive(Debug)]
struct Item {
count: usize,
bits: BitVec,
}
impl Item {
fn new(x: BitVec, so_far: &mut usize) -> Item {
*so_far += x.count_ones();
Item {
count: *so_far,
bits: x,
}
}
}
impl Sieve {
/// Create a new instance, sieving out all the primes up to
/// `limit`.
pub fn new(limit: usize) -> Sieve {
let mut seen = SmallVec1::new();
let mut nbits = 0;
let mut so_far = 0;
let mut seg_bits = None;
match wheel::small_for(limit) {
Some(bits) => {
nbits = bits.len();
seen.push(Item::new(bits, &mut 0));
seg_bits = Some(nbits)
}
None => {
let mut stream = StreamingSieve::new(limit);
while let Some((n, bits)) = stream.next() {
let bits_limit = wheel::bit_index((limit - n).saturating_add(1)).1;
seen.push(Item::new(bits.clone(), &mut so_far));
nbits += cmp::min(bits.len(), bits_limit);
match seg_bits {
None => seg_bits = Some(bits.len()),
Some(old) => assert_eq!(old, bits.len()),
}
}
}
}
// this is a bit of a lie, but this length only matters when
// computing indices into `seen`, and everything will be in
// the first and only one in this case, so we better ensure
// that all queries get fed into that array (there's been
// panics from the limit being used as a query for
// e.g. prime_pi, as split_index would return (1, 0),
// suggesting that code look at a non-existant element of
// seen).
let seg_bits_adjust = if seen.len() == 1 { 1 } else { 0 };
Sieve {
seg_bits: seg_bits.unwrap() + seg_bits_adjust,
nbits,
seen,
}
}
fn split_index(&self, idx: usize) -> (usize, usize) {
(idx / self.seg_bits, idx % self.seg_bits)
}
fn index_for(&self, n: usize) -> (bool, usize, usize) {
let (b, idx) = wheel::bit_index(n);
let (base, tweak) = self.split_index(idx);
(b, base, tweak)
}
fn prime_pi_chunk(&self, n: usize) -> usize {
if n == 0 {
0
} else {
self.seen[n - 1].count
}
}
/// Return the largest number that this sieve knows about.
///
/// It will be at least as large as the number passed to `new`,
/// but may be slightly larger.
///
/// # Examples
///
/// ```rust
/// let sieve = primal::Sieve::new(1000);
///
/// assert!(sieve.upper_bound() >= 1000);
/// ```
pub fn upper_bound(&self) -> usize {
wheel::upper_bound(self.nbits)
}
/// Determine if `n` is a prime number.
///
/// # Panics
///
/// If `n` is out of range (greater than `self.upper_bound()`),
/// `is_prime` will panic.
///
/// # Examples
///
/// ```rust
/// let sieve = primal::Sieve::new(1000);
///
/// assert_eq!(sieve.is_prime(0), false);
/// assert_eq!(sieve.is_prime(1), false);
/// assert_eq!(sieve.is_prime(2), true);
/// assert_eq!(sieve.is_prime(3), true);
/// assert_eq!(sieve.is_prime(4), false);
/// assert_eq!(sieve.is_prime(5), true);
///
/// assert_eq!(sieve.is_prime(991), true);
/// assert_eq!(sieve.is_prime(993), false);
/// assert_eq!(sieve.is_prime(995), false);
/// assert_eq!(sieve.is_prime(997), true);
/// assert_eq!(sieve.is_prime(999), false);
/// ```
pub fn is_prime(&self, n: usize) -> bool {
match self.index_for(n) {
(false, _, _) => n == 2 || n == 3 || n == 5 || n == 7,
(true, base, tweak) => self.seen[base].bits[tweak],
}
}
/// Count the number of primes upto and including `n`.
///
/// # Panics
///
/// If `n` is out of range (greater than `self.upper_bound()`),
/// `prime_pi` will panic.
///
/// # Examples
///
/// ```rust
/// let sieve = primal::Sieve::new(1000);
///
/// assert_eq!(sieve.prime_pi(10), 4);
/// // the endpoint is included
/// assert_eq!(sieve.prime_pi(11), 5);
///
/// assert_eq!(sieve.prime_pi(100), 25);
/// assert_eq!(sieve.prime_pi(1000), 168);
/// ```
pub fn prime_pi(&self, n: usize) -> usize {
assert!(n <= self.upper_bound());
match n {
0..=1 => 0,
2 => 1,
3..=4 => 2,
5..=6 => 3,
7..=10 => 4,
_ => {
let (includes, base, tweak) = self.index_for(n);
let mut count = match wheel::BYTE_MODULO {
30 => 3,
_ => unimplemented!()
};
count += self.prime_pi_chunk(base);
count += self.seen[base].bits.count_ones_before(tweak + includes as usize);
count
}
}
}
/// Factorise `n` into (prime, exponent) pairs.
///
/// Returns `Err((leftover, partial factorisation))` if `n` cannot
/// be fully factored, or if `n` is zero (`leftover == 0`). A
/// number can not be completely factored if and only if the prime
/// factors of `n` are too large for this sieve, that is, if there
/// is
///
/// - a prime factor larger than `U^2`, or
/// - more than one prime factor between `U` and `U^2`
///
/// where `U` is the upper bound of the primes stored in this
/// sieve.
///
/// Notably, any number between `U` and `U^2` can always be fully
/// factored, since these numbers are guaranteed to only have zero
/// or one prime factors larger than `U`.
///
/// # Examples
///
/// ```rust
/// let sieve = primal::Sieve::new(100);
///
/// assert_eq!(sieve.factor(2), Ok(vec![(2, 1)]));
/// assert_eq!(sieve.factor(4), Ok(vec![(2, 2)]));
/// assert_eq!(sieve.factor(1 << 31), Ok(vec![(2, 31)]));
///
/// assert_eq!(sieve.factor(18), Ok(vec![(2, 1), (3, 2)]));
///
/// assert_eq!(sieve.factor(25 * 81), Ok(vec![(3, 4), (5, 2)]));
///
/// // "large" prime factors are OK, as long as there's only one
/// assert_eq!(sieve.factor(2 * 3 * 97 * 97 * 991),
/// Ok(vec![(2, 1), (3, 1), (97, 2), (991, 1)]));
///
/// // too many large factors is problematic
/// assert_eq!(sieve.factor(991 * 991),
/// Err((991 * 991, vec![])));
/// assert_eq!(sieve.factor(2 * 3 * 17 * 17 * 991 * 991),
/// Err((991 * 991, vec![(2, 1), (3, 1), (17, 2)])));
/// ```
pub fn factor(&self, mut n: usize) -> Result<Vec<(usize,usize)>,
(usize, Vec<(usize, usize)>)>
{
if n == 0 { return Err((0, vec![])) }
if n == 1 { return Ok(vec![]) }
let mut ret = Vec::new();
// Using optimized internal iteration
self.primes_from(0).for_each_while(|p| {
if n % p == 0 {
n /= p;
let mut count = 1;
while n % p == 0 {
n /= p;
count += 1;
}
ret.push((p,count));
}
p.saturating_mul(p) < n
});
if n != 1 {
let b = self.upper_bound();
if let Some(bb) = b.checked_mul(b) {
if bb < n {
// large factors :(
return Err((n, ret))
}
}
// n is not divisible by anything from 1..=sqrt(n), so
// must be prime itself! (That is, even though we
// don't know this prime specifically, we can infer
// that it must be prime.)
ret.push((n, 1));
}
Ok(ret)
}
/// Compute *p<sub>n</sub>*, the `n` prime number, 1-indexed
/// (i.e. *p<sub>1</sub>* = 2, *p<sub>2</sub>* = 3).
///
/// # Panics
///
/// `n` must be larger than 0 and less than the total number of
/// primes in this sieve (that is,
/// `self.prime_pi(self.upper_bound())`).
///
/// # Example
///
/// ```rust
/// let (_, hi) = primal::estimate_nth_prime(1_000);
///
/// let sieve = primal::Sieve::new(hi as usize);
///
/// assert_eq!(sieve.nth_prime(10), 29);
/// assert_eq!(sieve.nth_prime(100), 541);
/// assert_eq!(sieve.nth_prime(1_000), 7919);
/// ```
pub fn nth_prime(&self, n: usize) -> usize {
match n {
1 => 2,
2 => 3,
3 => 5,
_ => {
assert!(0 < n && n <= 3 + self.prime_pi_chunk(self.seen.len()));
// the bit vectors don't store the first three primes,
// so we're looking for this (one-indexed) bit
let bit_n = n - 3;
let chunk_idx = self.seen.binary_search_by(|x| x.count.cmp(&bit_n))
.unwrap_or_else(|x| x);
let chunk_bits = self.prime_pi_chunk(chunk_idx);
let bit_idx = self.seen[chunk_idx].bits.find_nth_bit(bit_n - chunk_bits - 1);
wheel::from_bit_index(chunk_idx * self.seg_bits + bit_idx.unwrap())
}
}
}
/// Return an iterator over the primes from `n` (inclusive) to the
/// end of this sieve.
///
/// NB. it is not guaranteed that the end is the same as the limit
/// passed to `new`: it may be larger. Consider using `take_while`
/// if the limit must be exact.
///
/// # Panics
///
/// If `n` is out of range (greater than `self.upper_bound()`),
/// `primes_from` will panic.
///
/// # Examples
///
/// ```rust
/// let sieve = primal::Sieve::new(1_000);
///
/// // print the three digit primes
/// for p in sieve.primes_from(100).take_while(|x| *x < 1000) {
/// println!("{}", p);
/// }
/// ```
pub fn primes_from(&self, n: usize) -> SievePrimes<'_> {
assert!(n <= self.upper_bound());
let early = match n {
0..=2 => Early::Two,
3 => Early::Three,
4..=5 => Early::Five,
_ => Early::Done
};
let (_, base, tweak) = self.index_for(n);
assert!(self.seen.len() == 1 || self.seg_bits % 8 == 0);
let base_byte_count = base * self.seg_bits / 8;
let bits = &self.seen[base].bits;
let current_base = base_byte_count * wheel::BYTE_MODULO;
let next_base = current_base.saturating_add(bits.len() * wheel::BYTE_MODULO / 8);
SievePrimes {
early,
base: current_base,
next_base,
ones: bits.ones_from(tweak),
limit: self.upper_bound(),
bits: self.seen[base + 1..].iter(),
}
}
}
#[derive(Clone)]
enum Early {
Two,
Three,
Five,
Done,
}
/// An iterator over the primes stored in a `Sieve` instance.
#[derive(Clone)]
pub struct SievePrimes<'a> {
early: Early,
base: usize,
next_base: usize,
limit: usize,
ones: primal_bit::Ones<'a>,
bits: slice::Iter<'a, Item>,
}
impl<'a> SievePrimes<'a> {
#[inline]
fn from_bit_index(&self, i: usize) -> Option<usize> {
let w = wheel::from_bit_index(i);
match self.base.checked_add(w) {
Some(p) if p <= self.limit => Some(p),
_ => None,
}
}
fn advance_ones(&mut self) -> bool {
match self.bits.next() {
Some(Item { bits, .. }) => {
self.base = self.next_base;
self.next_base = self
.next_base
.saturating_add(bits.len() * wheel::BYTE_MODULO / 8);
self.ones = bits.ones_from(0);
true
},
None => false,
}
}
// Private method specifically to get internal iteration in `factor`.
// When `Try` is stable, we could more generally override `try_fold`, but
// that also requires keeping all state consistent, like `self.early`.
fn for_each_while<F>(mut self, mut f: F)
where
F: FnMut(usize) -> bool,
{
if !match self.early {
Early::Done => true,
Early::Two => f(2) && f(3) && f(5),
Early::Three => f(3) && f(5),
Early::Five => f(5),
} {
return;
}
loop {
while let Some(i) = self.ones.next() {
match self.from_bit_index(i) {
Some(p) => if !f(p) { return },
None => return,
}
}
if !self.advance_ones() {
return;
}
}
}
}
// See also `Iterator for Primes` with nearly identical code.
impl<'a> Iterator for SievePrimes<'a> {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<usize> {
match self.early {
Early::Done => {}
Early::Two => {
self.early = Early::Three;
return Some(2)
}
Early::Three => {
self.early = Early::Five;
return Some(3)
}
Early::Five => {
self.early = Early::Done;
return Some(5)
}
}
loop {
if let Some(i) = self.ones.next() {
return self.from_bit_index(i);
}
if !self.advance_ones() {
return None;
}
}
}
fn fold<Acc, F>(mut self, mut acc: Acc, mut f: F) -> Acc
where
F: FnMut(Acc, Self::Item) -> Acc
{
match self.early {
Early::Done => {}
Early::Two => {
acc = f(acc, 2);
acc = f(acc, 3);
acc = f(acc, 5);
}
Early::Three => {
acc = f(acc, 3);
acc = f(acc, 5);
}
Early::Five => {
acc = f(acc, 5);
}
}
loop {
while let Some(i) = self.ones.next() {
match self.from_bit_index(i) {
Some(p) => acc = f(acc, p),
None => return acc,
}
}
if !self.advance_ones() {
return acc;
}
}
}
}
#[cfg(test)]
mod tests {
use primal_slowsieve::Primes;
use super::Sieve;
#[test]
fn small() {
let larger = Sieve::new(100_000);
for limit in 2..1_000 {
let sieve = Sieve::new(limit);
assert!(sieve.upper_bound() >= limit);
let primes = sieve.prime_pi(limit);
assert_eq!(primes, larger.prime_pi(limit));
let nth = sieve.nth_prime(primes);
assert!(nth <= limit);
assert_eq!(nth, larger.nth_prime(primes));
}
}
#[test]
fn is_prime() {
let limit = 2_000_000;
let real = Primes::sieve(limit);
let primes = Sieve::new(limit);
for i in 0..limit {
assert!(primes.is_prime(i) == real.is_prime(i),
"failed for {} (real = {})", i, real.is_prime(i));
}
}
#[test]
fn primes_from_smoke() {
let limit = 100;
let primes = Sieve::new(limit);
let real = &[2, 3, 5, 7, 11,
13, 17, 19, 23, 29,
31, 37, 41, 43, 47,
53, 59, 61, 67, 71,
73, 79, 83, 89, 97];
for i in 0..limit {
let idx = real.iter().position(|x| *x >= i).unwrap_or(real.len());
assert_eq!(primes.primes_from(i).take_while(|x| *x <= limit).collect::<Vec<_>>(),
&real[idx..]);
}
}
#[test]
fn primes_from_count() {
let limit = 2_100_000;
let primes = Sieve::new(limit);
let upto = 2_000_000;
assert_eq!(primes.primes_from(0).take_while(|x| *x <= upto).count(),
primes.prime_pi(upto));
}
#[test]
fn primes_from_equality() {
let limit = 2_000_000;
let primes = Sieve::new(limit);
let real = Primes::sieve(limit);
let real = real.primes().take_while(|x| *x <= limit);
let computed = primes.primes_from(0).take_while(|x| *x <= limit);
let mut i = 0;
for (r, p) in real.zip(computed) {
assert_eq!(r, p);
i += 1;
}
assert_eq!(i, primes.prime_pi(limit));
}
#[test]
fn primes_from_no_overrun() {
let real = Sieve::new(1000);
for i in 0..100 {
let i = i * 38 / 39 + 1;
let sieve = Sieve::new(i);
for p in sieve.primes_from(0) {
assert!(real.is_prime(p));
}
}
}
#[test]
fn upper_bound() {
for i in 1..1000 {
let primes = Sieve::new(i);
assert!(primes.upper_bound() >= i);
}
let range = if cfg!(feature = "slow_tests") {
1..200
} else {
100..120
};
for i in range {
let i = i * 10_000;
let primes = Sieve::new(i);
assert!(primes.upper_bound() >= i);
}
}
#[test]
fn prime_pi() {
let (limit, mult) = if cfg!(feature = "slow_tests") {
(2_000_000, 19_998)
} else {
(200_000, 1_998)
};
let primes = Sieve::new(limit);
let real = Primes::sieve(limit);
for i in (0..20).chain((0..100).map(|n| n * mult + 1)) {
let val = primes.prime_pi(i);
let true_ = real.primes().take_while(|p| *p <= i).count();
assert!(val == true_, "failed for {}, true {}, computed {}",
i, true_, val)
}
}
#[test]
fn factor() {
let primes = Sieve::new(1000);
let tests: &[(usize, &[(usize, usize)])] = &[
(1, &[]),
(2, &[(2_usize, 1)]),
(3, &[(3, 1)]),
(4, &[(2, 2)]),
(5, &[(5, 1)]),
(6, &[(2, 1), (3, 1)]),
(7, &[(7, 1)]),
(8, &[(2, 3)]),
(9, &[(3, 2)]),
(10, &[(2, 1), (5, 1)]),
(2*2*2*2*2 * 3*3*3*3*3, &[(2, 5), (3,5)]),
(2*3*5*7*11*13*17*19, &[(2,1), (3,1), (5,1), (7,1), (11,1), (13,1), (17,1), (19,1)]),
// a factor larger than that stored in the map
(7561, &[(7561, 1)]),
(2*7561, &[(2, 1), (7561, 1)]),
(4*5*7561, &[(2, 2), (5,1), (7561, 1)]),
];
for &(n, expected) in tests.iter() {
assert_eq!(primes.factor(n), Ok(expected.to_vec()));
}
}
#[test]
fn factor_compare() {
let short = Sieve::new(30);
let long = Sieve::new(10000);
let short_lim = short.upper_bound() * short.upper_bound() + 1;
// every number less than bound^2 can be factored (since they
// always have a factor <= bound).
for n in 0..short_lim {
assert_eq!(short.factor(n), long.factor(n))
}
// larger numbers can only sometimes be factored
'next_n: for n in short_lim..10000 {
let possible = short.factor(n);
let real = long.factor(n).ok().unwrap();
let mut seen_small = None;
for (this_idx, &(p,i)) in real.iter().enumerate() {
let last_short_prime = if p >= short_lim {
this_idx
} else if p > short.upper_bound() {
match seen_small {
Some(idx) => idx,
None if i > 1 => this_idx,
None => {
// we can cope with one
seen_small = Some(this_idx);
continue
}
}
} else {
// small enough
continue
};
// break into the two parts
let (low, hi) = real.split_at(last_short_prime);
let leftover = hi.iter().fold(1, |x, &(p, i)| x * p.pow(i as u32));
assert_eq!(possible, Err((leftover, low.to_vec())));
continue 'next_n;
}
// if we're here, we know that everything should match
assert_eq!(possible, Ok(real))
}
}
#[test]
#[cfg_attr(not(feature = "slow_tests"), ignore)]
fn factor_overflow() {
// if bound^2 overflows usize, we can factor any usize,
// but must take care to not hit overflow assertions.
// set up a limit that would overflow if naively squared, and a
// prime greater than that limit. (these are more than double)
#[cfg(target_pointer_width = "32")]
const LIMIT_PRIME: (usize, usize) = (0x10000, 0x2001d);
#[cfg(target_pointer_width = "64")]
const LIMIT_PRIME: (usize, usize) = (0x100000000, 0x200000011);
let (limit, prime) = LIMIT_PRIME;
let primes = Sieve::new(limit);
assert!(prime > primes.upper_bound());
assert_eq!(primes.factor(prime), Ok(vec![(prime, 1)]));
}
#[test]
fn factor_failures() {
let primes = Sieve::new(30);
assert_eq!(primes.factor(0),
Err((0, vec![])));
// can only handle one large factor
assert_eq!(primes.factor(31 * 31),
Err((31 * 31, vec![])));
assert_eq!(primes.factor(2 * 3 * 31 * 31),
Err((31 * 31, vec![(2, 1), (3, 1)])));
// prime that's too large (bigger than 30*30).
assert_eq!(primes.factor(7561),
Err((7561, vec![])));
assert_eq!(primes.factor(2 * 3 * 7561),
Err((7561, vec![(2, 1), (3, 1)])));
}
#[test]
fn nth_prime() {
let primes = Sieve::new(2_000_000);
for (i, p) in primes.primes_from(0).enumerate() {
let n = i + 1;
if n < 2000 || n % 1000 == 0 {
assert_eq!(primes.nth_prime(n), p);
}
}
let total = primes.prime_pi(primes.upper_bound());
assert!(primes.nth_prime(total) <= primes.upper_bound());
}
#[test]
fn sum_primes() {
let primes = Sieve::new(2_000_000);
let mut manual_sum = 0u64;
for p in primes.primes_from(0) {
manual_sum += p as u64;
}
dbg!(manual_sum);
let folded_sum = primes.primes_from(0).fold(0u64, |acc, p| acc + p as u64);
let trait_sum = primes.primes_from(0).map(|p| p as u64).sum::<u64>();
assert_eq!(manual_sum, folded_sum);
assert_eq!(manual_sum, trait_sum);
}
#[test]
#[cfg_attr(not(feature = "slow_tests"), ignore)]
fn u32_primes() {
const COUNT: usize = 203_280_221; // number of 32-bit primes
const LAST: usize = 4_294_967_291; // last 32-bit prime
const SUM: u64 = 425_649_736_193_687_430; // sum of 32-bit primes
let sieve = Sieve::new(::std::u32::MAX as usize);
assert!(sieve.upper_bound() >= LAST);
assert_eq!(sieve.primes_from(LAST - 100).last(), Some(LAST));
let mut count = 0;
let mut sum = 0;
for p in sieve.primes_from(0) {
count += 1;
sum += p as u64;
}
assert_eq!(count, COUNT);
assert_eq!(sum, SUM);
}
#[test]
fn prime_pi_sieve_limit() {
// previously, these numbers would result in an index
// out-of-bounds when used as the limit and the number fed to
// prime_pi.
for limit in 19998..20004 {
let sieve = Sieve::new(limit);
sieve.prime_pi(limit);
}
}
}