1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
//! Sieve small numbers.
//!
//! This is designed to be used via the `primal` crate.
use primal_bit::BitVec;
use std::{iter, cmp};
/// Stores information about primes up to some limit.
///
/// This uses at least `limit / 16 + O(1)` bytes of storage.
#[derive(Debug)]
pub struct Primes {
// This only stores odd numbers, since even numbers are mostly
// non-prime.
//
// This indicates which numbers are composite.
v: BitVec
}
/// Iterator over the primes stored in a sieve.
#[derive(Clone)]
pub struct PrimeIterator<'a> {
two: bool,
iter: iter::Enumerate<primal_bit::Iter<'a>>,
}
impl Primes {
/// Construct a `Primes` via a sieve up to at least `limit`.
///
/// This stores all primes less than `limit` (and possibly some
/// more), allowing for very efficient iteration and primality
/// testing below this, and guarantees that all numbers up to
/// `limit^2` can be factorised.
pub fn sieve(limit: usize) -> Primes {
// having this out-of-line like this is faster (130 us/iter
// vs. 111 us/iter on sieve_large), and using a manual while
// rather than a `range_step` is a similar speedup.
#[inline(never)]
fn filter(is_prime: &mut BitVec, limit: usize, p: usize) {
let mut zero = p * p / 2;
while zero < limit / 2 {
is_prime.set(zero, true);
zero += p;
}
}
// bad stuff happens for very small bounds.
let limit = cmp::max(10, limit);
let mut is_prime = BitVec::from_elem((limit + 1) / 2, false);
// 1 isn't prime
is_prime.set(0, true);
// multiples of 3 aren't prime (3 is handled separately, so
// the ticking works properly)
filter(&mut is_prime, limit, 3);
let bound = (limit as f64).sqrt() as usize + 1;
// skip 2.
let mut check = 2;
let mut tick = if check % 3 == 1 {2} else {1};
while check <= bound {
if !is_prime[check] {
filter(&mut is_prime, limit, 2 * check + 1)
}
check += tick;
tick = 3 - tick;
}
Primes { v: is_prime }
}
/// The largest number stored.
pub fn upper_bound(&self) -> usize {
self.v.len() * 2
}
/// Check if `n` is prime, possibly failing if `n` is larger than
/// the upper bound of this Primes instance.
pub fn is_prime(&self, n: usize) -> bool {
if n % 2 == 0 {
// 2 is the evenest prime.
n == 2
} else {
assert!(n <= self.upper_bound());
!self.v[n / 2]
}
}
/// Iterator over the primes stored in this map.
pub fn primes(&self) -> PrimeIterator<'_> {
PrimeIterator {
two: true,
iter: self.v.iter().enumerate()
}
}
/// Factorise `n` into (prime, exponent) pairs.
///
/// Returns `Err((leftover, partial factorisation))` if `n` cannot
/// be fully factored, or if `n` is zero (`leftover == 0`). A
/// number can not be completely factored if and only if the prime
/// factors of `n` are too large for this sieve, that is, if there
/// is
///
/// - a prime factor larger than `U^2`, or
/// - more than one prime factor between `U` and `U^2`
///
/// where `U` is the upper bound of the primes stored in this
/// sieve.
///
/// Notably, any number between `U` and `U^2` can always be fully
/// factored, since these numbers are guaranteed to only have zero
/// or one prime factors larger than `U`.
pub fn factor(&self, mut n: usize) -> Result<Vec<(usize,usize)>,
(usize, Vec<(usize, usize)>)>
{
if n == 0 { return Err((0, vec![])) }
let mut ret = Vec::new();
for p in self.primes() {
if n == 1 { break }
let mut count = 0;
while n % p == 0 {
n /= p;
count += 1;
}
if count > 0 {
ret.push((p,count));
}
}
if n != 1 {
let b = self.upper_bound();
if b * b >= n {
// n is not divisible by anything from 1..=sqrt(n), so
// must be prime itself! (That is, even though we
// don't know this prime specifically, we can infer
// that it must be prime.)
ret.push((n, 1));
} else {
// large factors :(
return Err((n, ret))
}
}
Ok(ret)
}
/// Count the primes upto and including `n`.
///
/// # Panics
///
/// `count_upto` panics if `n > self.upper_bound()`.
pub fn count_upto(&self, n: usize) -> usize {
if n < 2 { return 0 }
assert!(n <= self.upper_bound());
let bit = (n + 1) / 2;
1 + (bit - self.v.count_ones_before(bit))
}
}
impl<'a> Iterator for PrimeIterator<'a> {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<usize> {
if self.two {
self.two = false;
Some(2)
} else {
for (i, is_not_prime) in &mut self.iter {
if !is_not_prime {
return Some(2 * i + 1)
}
}
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let mut iter = self.clone();
// TODO: this doesn't run in constant time, is it super-bad?
match (iter.next(), iter.next_back()) {
(Some(lo), Some(hi)) => {
let (below_hi, above_hi) = primal_estimate::prime_pi(hi as u64);
let (below_lo, above_lo) = primal_estimate::prime_pi(lo as u64);
((below_hi - cmp::min(above_lo, below_hi)) as usize,
Some((above_hi - below_lo + 1) as usize))
}
(Some(_), None) => (1, Some(1)),
(None, _) => (0, Some(0))
}
}
}
impl<'a> DoubleEndedIterator for PrimeIterator<'a> {
#[inline]
fn next_back(&mut self) -> Option<usize> {
loop {
match self.iter.next_back() {
Some((i, false)) => return Some(2 * i + 1),
Some((_, true)) => {/* continue */}
None if self.two => {
self.two = false;
return Some(2)
}
None => return None
}
}
}
}
#[cfg(test)]
mod tests {
use super::Primes;
#[test]
fn is_prime() {
let primes = Primes::sieve(1000);
let tests = [
(0, false),
(1, false),
(2, true),
(3, true),
(4, false),
(5, true),
(6, false),
(7, true),
(8, false),
(9, false),
(10, false),
(11, true)
];
for &(n, expected) in tests.iter() {
assert_eq!(primes.is_prime(n), expected);
}
}
#[test]
fn upper_bound() {
for i in 1..1000 {
let primes = Primes::sieve(i);
assert!(primes.upper_bound() >= i);
}
let range = if cfg!(feature = "slow_tests") {
1..200
} else {
100..120
};
for i in range {
let i = i * 10000;
let primes = Primes::sieve(i);
assert!(primes.upper_bound() >= i);
}
}
#[test]
fn primes_iterator() {
let primes = Primes::sieve(50);
let mut expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47];
assert_eq!(primes.primes().collect::<Vec<usize>>(), expected);
expected.reverse();
assert_eq!(primes.primes().rev().collect::<Vec<usize>>(), expected);
}
#[test]
fn factor() {
let primes = Primes::sieve(1000);
let tests: &[(usize, &[(usize, usize)])] = &[
(1, &[]),
(2, &[(2_usize, 1)]),
(3, &[(3, 1)]),
(4, &[(2, 2)]),
(5, &[(5, 1)]),
(6, &[(2, 1), (3, 1)]),
(7, &[(7, 1)]),
(8, &[(2, 3)]),
(9, &[(3, 2)]),
(10, &[(2, 1), (5, 1)]),
(2*2*2*2*2 * 3*3*3*3*3, &[(2, 5), (3,5)]),
(2*3*5*7*11*13*17*19, &[(2,1), (3,1), (5,1), (7,1), (11,1), (13,1), (17,1), (19,1)]),
// a factor larger than that stored in the map
(7561, &[(7561, 1)]),
(2*7561, &[(2, 1), (7561, 1)]),
(4*5*7561, &[(2, 2), (5,1), (7561, 1)]),
];
for &(n, expected) in tests.iter() {
assert_eq!(primes.factor(n), Ok(expected.to_vec()));
}
}
#[test]
fn factor_compare() {
let short = Primes::sieve(30);
let long = Primes::sieve(10000);
let short_lim = short.upper_bound() * short.upper_bound() + 1;
// every number less than bound^2 can be factored (since they
// always have a factor <= bound).
for n in 0..short_lim {
assert_eq!(short.factor(n), long.factor(n))
}
// larger numbers can only sometimes be factored
'next_n: for n in short_lim..10000 {
let possible = short.factor(n);
let real = long.factor(n).ok().unwrap();
let mut seen_small = None;
for (this_idx, &(p,i)) in real.iter().enumerate() {
let last_short_prime = if p >= short_lim {
this_idx
} else if p > short.upper_bound() {
match seen_small {
Some(idx) => idx,
None if i > 1 => this_idx,
None => {
// we can cope with one
seen_small = Some(this_idx);
continue
}
}
} else {
// small enough
continue
};
// break into the two parts
let (low, hi) = real.split_at(last_short_prime);
let leftover = hi.iter().fold(1, |x, &(p, i)| x * p.pow(i as u32));
assert_eq!(possible, Err((leftover, low.to_vec())));
continue 'next_n;
}
// if we're here, we know that everything should match
assert_eq!(possible, Ok(real))
}
}
#[test]
fn factor_failures() {
let primes = Primes::sieve(30);
assert_eq!(primes.factor(0),
Err((0, vec![])));
// can only handle one large factor
assert_eq!(primes.factor(31 * 31),
Err((31 * 31, vec![])));
assert_eq!(primes.factor(2 * 3 * 31 * 31),
Err((31 * 31, vec![(2, 1), (3, 1)])));
// prime that's too large (bigger than 30*30).
assert_eq!(primes.factor(7561),
Err((7561, vec![])));
assert_eq!(primes.factor(2 * 3 * 7561),
Err((7561, vec![(2, 1), (3, 1)])));
}
#[test]
fn size_hint() {
let mut i = 0;
while i < 1000 {
let sieve = Primes::sieve(i);
let mut primes = sieve.primes();
// check the size hint at each and every iteration
loop {
let (lo, hi) = primes.size_hint();
let copy = primes.clone();
let len = copy.count();
let next = primes.next();
assert!(lo <= len && len <= hi.unwrap(),
"found failing size_hint for {:?} to {}, should satisfy: {} <= {} <= {:?}",
next, i, lo, len, hi);
if next.is_none() {
break
}
}
i += 100;
}
}
#[test]
fn count_upto() {
let (limit, mult) = if cfg!(feature = "slow_tests") {
(2_000_000, 19_998)
} else {
(200_000, 1_998)
};
let sieve = Primes::sieve(limit);
for i in (0..20).chain((0..100).map(|n| n * mult + 1)) {
let val = sieve.count_upto(i);
let true_ = sieve.primes().take_while(|p| *p <= i).count();
assert!(val == true_, "failed for {}, true {}, computed {}",
i, true_, val)
}
}
}