1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
/*
 *  Copyright 2017 Gianmarco Garrisi
 *
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version, or (at your opinion) under the terms
 *  of the Mozilla Public License version 2.0.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//! This module contains the [`DoublePriorityQueue`] type and the related iterators.
//!
//! See the type level documentation for more details and examples.

pub mod iterators;

#[cfg(not(has_std))]
use std::vec::Vec;

use crate::core_iterators::{IntoIter, Iter};
use crate::store::{Index, Position, Store};
use iterators::*;

use std::borrow::Borrow;
use std::cmp::{Eq, Ord};
#[cfg(has_std)]
use std::collections::hash_map::RandomState;
use std::hash::{BuildHasher, Hash};
use std::iter::{Extend, FromIterator, IntoIterator, Iterator};
use std::mem::replace;

/// A double priority queue with efficient change function to change the priority of an
/// element.
///
/// The priority is of type P, that must implement `std::cmp::Ord`.
///
/// The item is of type I, that must implement `Hash` and `Eq`.
///
/// Implemented as a heap of indexes, stores the items inside an `IndexMap`
/// to be able to retrieve them quickly.
///
/// With this data structure it is possible to efficiently extract both
/// the maximum and minimum elements arbitrarily.
///
/// If your need is to always extract the minimum, use a
/// `PriorityQueue<I, Reverse<P>>` wrapping
/// your priorities in the standard wrapper
/// [`Reverse<T>`](https://doc.rust-lang.org/std/cmp/struct.Reverse.html).
///
///
/// # Example
/// ```rust
/// use priority_queue::DoublePriorityQueue;
///
/// let mut pq = DoublePriorityQueue::new();
///
/// assert!(pq.is_empty());
/// pq.push("Apples", 5);
/// pq.push("Bananas", 8);
/// pq.push("Strawberries", 23);
///
/// assert_eq!(pq.peek_max(), Some((&"Strawberries", &23)));
/// assert_eq!(pq.peek_min(), Some((&"Apples", &5)));
///
/// pq.change_priority("Bananas", 25);
/// assert_eq!(pq.peek_max(), Some((&"Bananas", &25)));
///
/// for (item, _) in pq.into_sorted_iter() {
///     println!("{}", item);
/// }
/// ```
#[derive(Clone)]
#[cfg(has_std)]
pub struct DoublePriorityQueue<I, P, H = RandomState>
where
    I: Hash + Eq,
    P: Ord,
{
    pub(crate) store: Store<I, P, H>,
}

#[derive(Clone)]
#[cfg(not(has_std))]
pub struct DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
{
    pub(crate) store: Store<I, P, H>,
}

// do not [derive(Eq)] to loosen up trait requirements for other types and impls
impl<I, P, H> Eq for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
}

impl<I, P, H> Default for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher + Default,
{
    fn default() -> Self {
        Self::with_default_hasher()
    }
}

#[cfg(has_std)]
impl<I, P> DoublePriorityQueue<I, P>
where
    P: Ord,
    I: Hash + Eq,
{
    /// Creates an empty `DoublePriorityQueue`
    pub fn new() -> Self {
        Self::with_capacity(0)
    }

    /// Creates an empty `DoublePriorityQueue` with the specified capacity.
    pub fn with_capacity(capacity: usize) -> Self {
        Self::with_capacity_and_default_hasher(capacity)
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
    H: BuildHasher + Default,
{
    /// Creates an empty `DoublePriorityQueue` with the default hasher
    pub fn with_default_hasher() -> Self {
        Self::with_capacity_and_default_hasher(0)
    }

    /// Creates an empty `DoublePriorityQueue` with the specified capacity and default hasher
    pub fn with_capacity_and_default_hasher(capacity: usize) -> Self {
        Self::with_capacity_and_hasher(capacity, H::default())
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
    H: BuildHasher,
{
    /// Creates an empty `DoublePriorityQueue` with the specified hasher
    pub fn with_hasher(hash_builder: H) -> Self {
        Self::with_capacity_and_hasher(0, hash_builder)
    }

    /// Creates an empty `DoublePriorityQueue` with the specified capacity and hasher
    ///
    /// The internal collections will be able to hold at least `capacity`
    /// elements without reallocating.
    /// If `capacity` is 0, there will be no allocation.
    pub fn with_capacity_and_hasher(capacity: usize, hash_builder: H) -> Self {
        Self {
            store: Store::with_capacity_and_hasher(capacity, hash_builder),
        }
    }

    /// Returns an iterator in arbitrary order over the
    /// (item, priority) elements in the queue
    pub fn iter(&self) -> Iter<I, P> {
        self.store.iter()
    }

    /// Shrinks the capacity of the internal data structures
    /// that support this operation as much as possible.
    pub fn shrink_to_fit(&mut self) {
        self.store.shrink_to_fit();
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
{
    /// Return an iterator in arbitrary order over the
    /// (item, priority) elements in the queue.
    ///
    /// The item and the priority are mutable references, but it's a logic error
    /// to modify the item in a way that change the result of `Hash` or `Eq`.
    ///
    /// It's *not* an error, instead, to modify the priorities, because the heap
    /// will be rebuilt once the `IterMut` goes out of scope. It would be
    /// rebuilt even if no priority value would have been modified, but the
    /// procedure will not move anything, but just compare the priorities.
    pub fn iter_mut(&mut self) -> IterMut<I, P, H> {
        IterMut::new(self)
    }

    /// Returns the couple (item, priority) with the lowest
    /// priority in the queue, or None if it is empty.
    ///
    /// Computes in **O(1)** time
    pub fn peek_min(&self) -> Option<(&I, &P)> {
        self.find_min().and_then(|i| {
            self.store
                .map
                .get_index(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
        })
    }

    /// Returns the couple (item, priority) with the greatest
    /// priority in the queue, or None if it is empty.
    ///
    /// Computes in **O(1)** time
    pub fn peek_max(&self) -> Option<(&I, &P)> {
        self.find_max().and_then(|i| {
            self.store
                .map
                .get_index(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
        })
    }

    /// Returns the couple (item, priority) with the lowest
    /// priority in the queue, or None if it is empty.
    ///
    /// The item is a mutable reference, but it's a logic error to modify it
    /// in a way that change the result of  `Hash` or `Eq`.
    ///
    /// The priority cannot be modified with a call to this function.
    /// To modify the priority use `push`, `change_priority` or
    /// `change_priority_by`.
    ///
    /// Computes in **O(1)** time
    pub fn peek_min_mut(&mut self) -> Option<(&mut I, &P)> {
        self.find_min()
            .and_then(move |i| {
                self.store
                    .map
                    .get_index_mut(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
            })
            .map(|(k, v)| (k, &*v))
    }

    /// Returns the couple (item, priority) with the greatest
    /// priority in the queue, or None if it is empty.
    ///
    /// The item is a mutable reference, but it's a logic error to modify it
    /// in a way that change the result of  `Hash` or `Eq`.
    ///
    /// The priority cannot be modified with a call to this function.
    /// To modify the priority use `push`, `change_priority` or
    /// `change_priority_by`.
    ///
    /// Computes in **O(1)** time
    pub fn peek_max_mut(&mut self) -> Option<(&mut I, &P)> {
        self.find_max()
            .and_then(move |i| {
                self.store
                    .map
                    .get_index_mut(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
            })
            .map(|(k, v)| (k, &*v))
    }

    /// Returns the number of elements the internal map can hold without
    /// reallocating.
    ///
    /// This number is a lower bound; the map might be able to hold more,
    /// but is guaranteed to be able to hold at least this many.
    pub fn capacity(&self) -> usize {
        self.store.capacity()
    }

    /// Removes the item with the lowest priority from
    /// the priority queue and returns the pair (item, priority),
    /// or None if the queue is empty.
    pub fn pop_min(&mut self) -> Option<(I, P)> {
        self.find_min().and_then(|i| {
            let r = self.store.swap_remove(i);
            self.heapify(i);
            r
        })
    }

    /// Removes the item with the greatest priority from
    /// the priority queue and returns the pair (item, priority),
    /// or None if the queue is empty.
    pub fn pop_max(&mut self) -> Option<(I, P)> {
        self.find_max().and_then(|i| {
            let r = self.store.swap_remove(i);
            self.heapify(i);
            r
        })
    }

    /// Implements a HeapSort.
    ///
    /// Consumes the PriorityQueue and returns a vector
    /// with all the items sorted from the one associated to
    /// the lowest priority to the highest.
    pub fn into_ascending_sorted_vec(mut self) -> Vec<I> {
        let mut res = Vec::with_capacity(self.store.size);
        while let Some((i, _)) = self.pop_min() {
            res.push(i);
        }
        res
    }

    /// Implements a HeapSort
    ///
    /// Consumes the PriorityQueue and returns a vector
    /// with all the items sorted from the one associated to
    /// the highest priority to the lowest.
    pub fn into_descending_sorted_vec(mut self) -> Vec<I> {
        let mut res = Vec::with_capacity(self.store.size);
        while let Some((i, _)) = self.pop_max() {
            res.push(i);
        }
        res
    }

    /// Returns the number of elements in the priority queue.
    #[inline]
    pub fn len(&self) -> usize {
        self.store.len()
    }

    /// Returns true if the priority queue contains no elements.
    pub fn is_empty(&self) -> bool {
        self.store.is_empty()
    }

    /// Generates a new double ended iterator from self that
    /// will extract the elements from the one with the lowest priority
    /// to the highest one.
    pub fn into_sorted_iter(self) -> IntoSortedIter<I, P, H> {
        IntoSortedIter { pq: self }
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
    H: BuildHasher,
{
    // reserve_exact -> IndexMap does not implement reserve_exact

    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the given `DoublePriorityQueue`. The collection may reserve more space to avoid
    /// frequent reallocations. After calling `reserve`, capacity will be
    /// greater than or equal to `self.len() + additional`. Does nothing if
    /// capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    pub fn reserve(&mut self, additional: usize) {
        self.store.reserve(additional);
    }

    /// Insert the item-priority pair into the queue.
    ///
    /// If an element equal to `item` was already into the queue,
    /// it is updated and the old value of its priority is returned in `Some`;
    /// otherwise, returns `None`.
    ///
    /// Computes in **O(log(N))** time.
    pub fn push(&mut self, item: I, priority: P) -> Option<P> {
        use indexmap::map::Entry::*;
        let mut pos = Position(0);
        let mut oldp = None;

        match self.store.map.entry(item) {
            Occupied(mut e) => {
                oldp = Some(replace(e.get_mut(), priority));
                pos = unsafe { *self.store.qp.get_unchecked(e.index()) };
            }
            Vacant(e) => {
                e.insert(priority);
            }
        }

        if oldp.is_some() {
            self.up_heapify(pos);
            return oldp;
        }
        // get a reference to the priority
        // copy the current size of the heap
        let i = self.len();
        // add the new element in the qp vector as the last in the heap
        self.store.qp.push(Position(i));
        self.store.heap.push(Index(i));
        self.bubble_up(Position(i), Index(i));
        self.store.size += 1;
        None
    }

    /// Increase the priority of an existing item in the queue, or
    /// insert it if not present.
    ///
    /// If an element equal to `item` is already in the queue with a
    /// lower priority, its priority is increased to the new one
    /// without replacing the element and the old priority is returned.
    /// Otherwise, the new element is inserted into the queue.
    ///
    /// Returns `Some` if an element equal to `item` is already in the
    /// queue. If its priority is higher then `priority`, the latter is returned back,
    /// otherwise, the old priority is contained in the Option.
    /// If the item is not in the queue, `None` is returned.
    ///
    /// Computes in **O(log(N))** time.
    pub fn push_increase(&mut self, item: I, priority: P) -> Option<P> {
        if self.get_priority(&item).map_or(true, |p| priority > *p) {
            self.push(item, priority)
        } else {
            Some(priority)
        }
    }

    /// Decrease the priority of an existing item in the queue, or
    /// insert it if not present.
    ///
    /// If an element equal to `item` is already in the queue with a
    /// higher priority, its priority is decreased to the new one
    /// without replacing the element and the old priority is returned.
    /// Otherwise, the new element is inserted into the queue.
    ///
    /// Returns `Some` if an element equal to `item` is already in the
    /// queue. If its priority is lower then `priority`, the latter is returned back,
    /// otherwise, the old priority is contained in the Option.
    /// If the item is not in the queue, `None` is returned.
    ///
    /// Computes in **O(log(N))** time.
    pub fn push_decrease(&mut self, item: I, priority: P) -> Option<P> {
        if self.get_priority(&item).map_or(true, |p| priority < *p) {
            self.push(item, priority)
        } else {
            Some(priority)
        }
    }

    /// Change the priority of an Item returning the old value of priority,
    /// or `None` if the item wasn't in the queue.
    ///
    /// The argument `item` is only used for lookup, and is not used to overwrite the item's data
    /// in the priority queue.
    ///
    /// The item is found in **O(1)** thanks to the hash table.
    /// The operation is performed in **O(log(N))** time.
    pub fn change_priority<Q: ?Sized>(&mut self, item: &Q, new_priority: P) -> Option<P>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.store
            .change_priority(item, new_priority)
            .map(|(r, pos)| {
                self.up_heapify(pos);
                r
            })
    }

    /// Change the priority of an Item using the provided function.
    /// Return a boolean value where `true` means the item was in the queue and update was successful
    ///
    /// The argument `item` is only used for lookup, and is not used to overwrite the item's data
    /// in the priority queue.
    ///
    /// The item is found in **O(1)** thanks to the hash table.
    /// The operation is performed in **O(log(N))** time (worst case).
    pub fn change_priority_by<Q: ?Sized, F>(&mut self, item: &Q, priority_setter: F) -> bool
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
        F: FnOnce(&mut P),
    {
        self.store
            .change_priority_by(item, priority_setter)
            .map(|pos| {
                self.up_heapify(pos);
            })
            .is_some()
    }

    /// Get the priority of an item, or `None`, if the item is not in the queue
    pub fn get_priority<Q: ?Sized>(&self, item: &Q) -> Option<&P>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.store.get_priority(item)
    }

    /// Get the couple (item, priority) of an arbitrary element, as reference
    /// or `None` if the item is not in the queue.
    pub fn get<Q: ?Sized>(&self, item: &Q) -> Option<(&I, &P)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.store.get(item)
    }

    /// Get the couple (item, priority) of an arbitrary element, or `None`
    /// if the item was not in the queue.
    ///
    /// The item is a mutable reference, but it's a logic error to modify it
    /// in a way that change the result of  `Hash` or `Eq`.
    ///
    /// The priority cannot be modified with a call to this function.
    /// To modify the priority use `push`, `change_priority` or
    /// `change_priority_by`.
    pub fn get_mut<Q: ?Sized>(&mut self, item: &Q) -> Option<(&mut I, &P)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.store.get_mut(item)
    }

    /// Remove an arbitrary element from the priority queue.
    /// Returns the (item, priority) couple or None if the item
    /// is not found in the queue.
    ///
    /// The operation is performed in **O(log(N))** time (worst case).
    pub fn remove<Q: ?Sized>(&mut self, item: &Q) -> Option<(I, P)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.store.remove(item).map(|(item, priority, pos)| {
            if pos.0 < self.len() {
                self.up_heapify(pos);
            }

            (item, priority)
        })
    }

    /// Returns the items not ordered
    pub fn into_vec(self) -> Vec<I> {
        self.store.into_vec()
    }

    /// Drops all items from the priority queue
    pub fn clear(&mut self) {
        self.store.clear();
    }

    /// Move all items of the `other` queue to `self`
    /// ignoring the items Eq to elements already in `self`
    /// At the end, `other` will be empty.
    ///
    /// **Note** that at the end, the priority of the duplicated elements
    /// inside self may be the one of the elements in other,
    /// if other is longer than self
    pub fn append(&mut self, other: &mut Self) {
        self.store.append(&mut other.store);
        self.heap_build();
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
{
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
{
    /**************************************************************************/
    /*                            internal functions                          */

    fn heapify(&mut self, i: Position) {
        if self.len() <= 1 {
            return;
        }
        if level(i) % 2 == 0 {
            self.heapify_min(i)
        } else {
            self.heapify_max(i)
        }
    }

    fn heapify_min(&mut self, mut i: Position) {
        while i <= parent(Position(self.len() - 1)) {
            let m = i;

            let l = left(i);
            let r = right(i);
            // Minimum of childs and grandchilds
            i = *[l, r, left(l), right(l), left(r), right(r)]
                .iter()
                .map_while(|i| self.store.heap.get(i.0).map(|index| (i, index)))
                .min_by_key(|(_, index)| {
                    self.store
                        .map
                        .get_index(index.0)
                        .map(|(_, priority)| priority)
                        .unwrap()
                })
                .unwrap()
                .0;

            if unsafe {
                self.store.get_priority_from_position(i) < self.store.get_priority_from_position(m)
            } {
                self.store.swap(i, m);
                if i > r {
                    // i is a grandchild of m
                    let p = parent(i);
                    if unsafe {
                        self.store.get_priority_from_position(i)
                            > self.store.get_priority_from_position(p)
                    } {
                        self.store.swap(i, p);
                    }
                } else {
                    break;
                }
            } else {
                break;
            }
        }
    }

    fn heapify_max(&mut self, mut i: Position) {
        while i <= parent(Position(self.len() - 1)) {
            let m = i;

            let l = left(i);
            let r = right(i);
            // Minimum of childs and grandchilds
            i = *[l, r, left(l), right(l), left(r), right(r)]
                .iter()
                .map_while(|i| self.store.heap.get(i.0).map(|index| (i, index)))
                .max_by_key(|(_, index)| {
                    self.store
                        .map
                        .get_index(index.0)
                        .map(|(_, priority)| priority)
                        .unwrap()
                })
                .unwrap()
                .0;

            if unsafe {
                self.store.get_priority_from_position(i) > self.store.get_priority_from_position(m)
            } {
                self.store.swap(i, m);
                if i > r {
                    // i is a grandchild of m
                    let p = parent(i);
                    if unsafe {
                        self.store.get_priority_from_position(i)
                            < self.store.get_priority_from_position(p)
                    } {
                        self.store.swap(i, p);
                    }
                } else {
                    break;
                }
            } else {
                break;
            }
        }
    }

    fn bubble_up(&mut self, mut position: Position, map_position: Index) -> Position {
        let priority = self.store.map.get_index(map_position.0).unwrap().1;
        if position.0 > 0 {
            let parent = parent(position);
            let parent_priority = unsafe { self.store.get_priority_from_position(parent) };
            let parent_index = unsafe { *self.store.heap.get_unchecked(parent.0) };
            position = match (level(position) % 2 == 0, parent_priority < priority) {
                // on a min level and greater then parent
                (true, true) => {
                    unsafe {
                        *self.store.heap.get_unchecked_mut(position.0) = parent_index;
                        *self.store.qp.get_unchecked_mut(parent_index.0) = position;
                    }
                    self.bubble_up_max(parent, map_position)
                }
                // on a min level and less then parent
                (true, false) => self.bubble_up_min(position, map_position),
                // on a max level and greater then parent
                (false, true) => self.bubble_up_max(position, map_position),
                // on a max level and less then parent
                (false, false) => {
                    unsafe {
                        *self.store.heap.get_unchecked_mut(position.0) = parent_index;
                        *self.store.qp.get_unchecked_mut(parent_index.0) = position;
                    }
                    self.bubble_up_min(parent, map_position)
                }
            }
        }

        unsafe {
            // put the new element into the heap and
            // update the qp translation table and the size
            *self.store.heap.get_unchecked_mut(position.0) = map_position;
            *self.store.qp.get_unchecked_mut(map_position.0) = position;
        }
        position
    }

    fn bubble_up_min(&mut self, mut position: Position, map_position: Index) -> Position {
        let priority = self.store.map.get_index(map_position.0).unwrap().1;
        let mut grand_parent = Position(0);
        while if position.0 > 0 && parent(position).0 > 0 {
            grand_parent = parent(parent(position));
            (unsafe { self.store.get_priority_from_position(grand_parent) }) > priority
        } else {
            false
        } {
            unsafe {
                let grand_parent_index = *self.store.heap.get_unchecked(grand_parent.0);
                *self.store.heap.get_unchecked_mut(position.0) = grand_parent_index;
                *self.store.qp.get_unchecked_mut(grand_parent_index.0) = position;
            }
            position = grand_parent;
        }
        position
    }

    fn bubble_up_max(&mut self, mut position: Position, map_position: Index) -> Position {
        let priority = self.store.map.get_index(map_position.0).unwrap().1;
        let mut grand_parent = Position(0);
        while if position.0 > 0 && parent(position).0 > 0 {
            grand_parent = parent(parent(position));
            (unsafe { self.store.get_priority_from_position(grand_parent) }) < priority
        } else {
            false
        } {
            unsafe {
                let grand_parent_index = *self.store.heap.get_unchecked(grand_parent.0);
                *self.store.heap.get_unchecked_mut(position.0) = grand_parent_index;
                *self.store.qp.get_unchecked_mut(grand_parent_index.0) = position;
            }
            position = grand_parent;
        }
        position
    }

    fn up_heapify(&mut self, i: Position) {
        let tmp = unsafe { *self.store.heap.get_unchecked(i.0) };
        let pos = self.bubble_up(i, tmp);
        if i != pos {
            self.heapify(i)
        }
        self.heapify(pos);
    }

    /// Internal function that transform the `heap`
    /// vector in a heap with its properties
    ///
    /// Computes in **O(N)**
    pub(crate) fn heap_build(&mut self) {
        if self.is_empty() {
            return;
        }
        for i in (0..=parent(Position(self.len())).0).rev() {
            self.heapify(Position(i));
        }
    }

    /// Returns the index of the max element
    fn find_max(&self) -> Option<Position> {
        match self.len() {
            0 => None,
            1 => Some(Position(0)),
            2 => Some(Position(1)),
            _ => Some(
                *[Position(1), Position(2)]
                    .iter()
                    .max_by_key(|i| unsafe { self.store.get_priority_from_position(**i) })
                    .unwrap(),
            ),
        }
    }

    /// Returns the index of the min element
    fn find_min(&self) -> Option<Position> {
        match self.len() {
            0 => None,
            _ => Some(Position(0)),
        }
    }
}

//FIXME: fails when the vector contains repeated items
// FIXED: repeated items ignored
impl<I, P, H> From<Vec<(I, P)>> for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher + Default,
{
    fn from(vec: Vec<(I, P)>) -> Self {
        let store = Store::from(vec);
        let mut pq = DoublePriorityQueue { store };
        pq.heap_build();
        pq
    }
}

use crate::PriorityQueue;

impl<I, P, H> From<PriorityQueue<I, P, H>> for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    fn from(pq: PriorityQueue<I, P, H>) -> Self {
        let store = pq.store;
        let mut this = Self { store };
        this.heap_build();
        this
    }
}

//FIXME: fails when the iterator contains repeated items
// FIXED: the item inside the pq is updated
// so there are two functions with different behaviours.
impl<I, P, H> FromIterator<(I, P)> for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher + Default,
{
    fn from_iter<IT>(iter: IT) -> Self
    where
        IT: IntoIterator<Item = (I, P)>,
    {
        let store = Store::from_iter(iter);
        let mut pq = DoublePriorityQueue { store };
        pq.heap_build();
        pq
    }
}

impl<I, P, H> IntoIterator for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    type Item = (I, P);
    type IntoIter = IntoIter<I, P>;
    fn into_iter(self) -> IntoIter<I, P> {
        self.store.into_iter()
    }
}

impl<'a, I, P, H> IntoIterator for &'a DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    type Item = (&'a I, &'a P);
    type IntoIter = Iter<'a, I, P>;
    fn into_iter(self) -> Iter<'a, I, P> {
        self.store.iter()
    }
}

impl<'a, I, P, H> IntoIterator for &'a mut DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
{
    type Item = (&'a mut I, &'a mut P);
    type IntoIter = IterMut<'a, I, P, H>;
    fn into_iter(self) -> IterMut<'a, I, P, H> {
        IterMut::new(self)
    }
}

impl<I, P, H> Extend<(I, P)> for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    fn extend<T: IntoIterator<Item = (I, P)>>(&mut self, iter: T) {
        let iter = iter.into_iter();
        let (min, max) = iter.size_hint();
        let rebuild = if let Some(max) = max {
            self.reserve(max);
            better_to_rebuild(self.len(), max)
        } else if min != 0 {
            self.reserve(min);
            better_to_rebuild(self.len(), min)
        } else {
            false
        };
        if rebuild {
            self.store.extend(iter);
            self.heap_build();
        } else {
            for (item, priority) in iter {
                self.push(item, priority);
            }
        }
    }
}

use std::fmt;

impl<I, P, H> fmt::Debug for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq + fmt::Debug,
    P: Ord + fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        self.store.fmt(f)
    }
}

use std::cmp::PartialEq;

impl<I, P1, H1, P2, H2> PartialEq<DoublePriorityQueue<I, P2, H2>> for DoublePriorityQueue<I, P1, H1>
where
    I: Hash + Eq,
    P1: Ord,
    P1: PartialEq<P2>,
    Option<P1>: PartialEq<Option<P2>>,
    P2: Ord,
    H1: BuildHasher,
    H2: BuildHasher,
{
    fn eq(&self, other: &DoublePriorityQueue<I, P2, H2>) -> bool {
        self.store == other.store
    }
}

/// Compute the index of the left child of an item from its index
#[inline(always)]
const fn left(i: Position) -> Position {
    Position((i.0 * 2) + 1)
}
/// Compute the index of the right child of an item from its index
#[inline(always)]
const fn right(i: Position) -> Position {
    Position((i.0 * 2) + 2)
}
/// Compute the index of the parent element in the heap from its index
#[inline(always)]
const fn parent(i: Position) -> Position {
    Position((i.0 - 1) / 2)
}

// Compute the level of a node from its index
#[inline(always)]
const fn level(i: Position) -> usize {
    log2_fast(i.0 + 1)
}

#[inline(always)]
const fn log2_fast(x: usize) -> usize {
    (usize::BITS - x.leading_zeros() - 1) as usize
}

// `rebuild` takes O(len1 + len2) operations
// and about 2 * (len1 + len2) comparisons in the worst case
// while `extend` takes O(len2 * log_2(len1)) operations
// and about 1 * len2 * log_2(len1) comparisons in the worst case,
// assuming len1 >= len2.
fn better_to_rebuild(len1: usize, len2: usize) -> bool {
    // log(1) == 0, so the inequation always falsy
    // log(0) is inapplicable and produces panic
    if len1 <= 1 {
        return false;
    }

    2 * (len1 + len2) < len2 * log2_fast(len1)
}

#[cfg(feature = "serde")]
mod serde {
    use std::cmp::{Eq, Ord};
    use std::hash::{BuildHasher, Hash};

    use serde::de::{Deserialize, Deserializer};
    use serde::ser::{Serialize, Serializer};

    use super::DoublePriorityQueue;
    use crate::store::Store;

    impl<I, P, H> Serialize for DoublePriorityQueue<I, P, H>
    where
        I: Hash + Eq + Serialize,
        P: Ord + Serialize,
        H: BuildHasher,
    {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: Serializer,
        {
            self.store.serialize(serializer)
        }
    }

    impl<'de, I, P, H> Deserialize<'de> for DoublePriorityQueue<I, P, H>
    where
        I: Hash + Eq + Deserialize<'de>,
        P: Ord + Deserialize<'de>,
        H: BuildHasher + Default,
    {
        fn deserialize<D>(deserializer: D) -> Result<DoublePriorityQueue<I, P, H>, D::Error>
        where
            D: Deserializer<'de>,
        {
            Store::deserialize(deserializer).map(|store| {
                let mut pq = DoublePriorityQueue { store };
                pq.heap_build();
                pq
            })
        }
    }
}