1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/*
* Copyright 2017 Gianmarco Garrisi
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version, or (at your option) under the terms
* of the Mozilla Public License version 2.0.
*
* ----
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* ----
*
* This Source Code Form is subject to the terms of the Mozilla Public License,
* v. 2.0. If a copy of the MPL was not distributed with this file, You can
* obtain one at http://mozilla.org/MPL/2.0/.
*
*/
//! This module contains the [`DoublePriorityQueue`] type and the related iterators.
//!
//! See the type level documentation for more details and examples.
pub mod iterators;
#[cfg(not(feature = "std"))]
use std::vec::Vec;
use crate::core_iterators::*;
use crate::store::{Index, Position, Store};
use crate::TryReserveError;
use iterators::*;
use std::borrow::Borrow;
use std::cmp::{Eq, Ord};
#[cfg(feature = "std")]
use std::collections::hash_map::RandomState;
use std::hash::{BuildHasher, Hash};
use std::iter::{Extend, FromIterator, IntoIterator, Iterator};
use std::mem::replace;
/// A double priority queue with efficient change function to change the priority of an
/// element.
///
/// The priority is of type P, that must implement `std::cmp::Ord`.
///
/// The item is of type I, that must implement `Hash` and `Eq`.
///
/// Implemented as a heap of indexes, stores the items inside an `IndexMap`
/// to be able to retrieve them quickly.
///
/// With this data structure it is possible to efficiently extract both
/// the maximum and minimum elements arbitrarily.
///
/// If your need is to always extract the minimum, use a
/// `PriorityQueue<I, Reverse<P>>` wrapping
/// your priorities in the standard wrapper
/// [`Reverse<T>`](https://doc.rust-lang.org/std/cmp/struct.Reverse.html).
///
///
/// # Example
/// ```rust
/// use priority_queue::DoublePriorityQueue;
///
/// let mut pq = DoublePriorityQueue::new();
///
/// assert!(pq.is_empty());
/// pq.push("Apples", 5);
/// pq.push("Bananas", 8);
/// pq.push("Strawberries", 23);
///
/// assert_eq!(pq.peek_max(), Some((&"Strawberries", &23)));
/// assert_eq!(pq.peek_min(), Some((&"Apples", &5)));
///
/// pq.change_priority("Bananas", 25);
/// assert_eq!(pq.peek_max(), Some((&"Bananas", &25)));
///
/// for (item, _) in pq.into_sorted_iter() {
/// println!("{}", item);
/// }
/// ```
#[derive(Clone)]
#[cfg(feature = "std")]
pub struct DoublePriorityQueue<I, P, H = RandomState> {
pub(crate) store: Store<I, P, H>,
}
#[derive(Clone)]
#[cfg(not(feature = "std"))]
pub struct DoublePriorityQueue<I, P, H> {
pub(crate) store: Store<I, P, H>,
}
// do not [derive(Eq)] to loosen up trait requirements for other types and impls
impl<I, P, H> Eq for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq,
P: Ord,
H: BuildHasher,
{
}
impl<I, P, H> Default for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq,
P: Ord,
H: BuildHasher + Default,
{
fn default() -> Self {
Self::with_default_hasher()
}
}
#[cfg(feature = "std")]
impl<I, P> DoublePriorityQueue<I, P>
where
P: Ord,
I: Hash + Eq,
{
/// Creates an empty `DoublePriorityQueue`
pub fn new() -> Self {
Self::with_capacity(0)
}
/// Creates an empty `DoublePriorityQueue` with the specified capacity.
pub fn with_capacity(capacity: usize) -> Self {
Self::with_capacity_and_default_hasher(capacity)
}
}
impl<I, P, H> DoublePriorityQueue<I, P, H>
where
P: Ord,
I: Hash + Eq,
H: BuildHasher + Default,
{
/// Creates an empty `DoublePriorityQueue` with the default hasher
pub fn with_default_hasher() -> Self {
Self::with_capacity_and_default_hasher(0)
}
/// Creates an empty `DoublePriorityQueue` with the specified capacity and default hasher
pub fn with_capacity_and_default_hasher(capacity: usize) -> Self {
Self::with_capacity_and_hasher(capacity, H::default())
}
}
impl<I, P, H> DoublePriorityQueue<I, P, H>
where
P: Ord,
I: Hash + Eq,
H: BuildHasher,
{
/// Creates an empty `DoublePriorityQueue` with the specified hasher
pub fn with_hasher(hash_builder: H) -> Self {
Self::with_capacity_and_hasher(0, hash_builder)
}
/// Creates an empty `DoublePriorityQueue` with the specified capacity and hasher
///
/// The internal collections will be able to hold at least `capacity`
/// elements without reallocating.
/// If `capacity` is 0, there will be no allocation.
pub fn with_capacity_and_hasher(capacity: usize, hash_builder: H) -> Self {
Self {
store: Store::with_capacity_and_hasher(capacity, hash_builder),
}
}
}
impl<I, P, H> DoublePriorityQueue<I, P, H> {
/// Returns the number of elements the internal map can hold without
/// reallocating.
///
/// This number is a lower bound; the map might be able to hold more,
/// but is guaranteed to be able to hold at least this many.
pub fn capacity(&self) -> usize {
self.store.capacity()
}
/// Returns an iterator in arbitrary order over the
/// (item, priority) elements in the queue
pub fn iter(&self) -> Iter<I, P> {
self.store.iter()
}
/// Clears the PriorityQueue, returning an iterator over the removed elements in arbitrary order.
/// If the iterator is dropped before being fully consumed, it drops the remaining elements in arbitrary order.
pub fn drain(&mut self) -> Drain<I, P> {
self.store.drain()
}
/// Shrinks the capacity of the internal data structures
/// that support this operation as much as possible.
pub fn shrink_to_fit(&mut self) {
self.store.shrink_to_fit();
}
/// Returns the number of elements in the priority queue.
#[inline]
pub fn len(&self) -> usize {
self.store.len()
}
/// Returns true if the priority queue contains no elements.
pub fn is_empty(&self) -> bool {
self.store.is_empty()
}
/// Returns the couple (item, priority) with the lowest
/// priority in the queue, or None if it is empty.
///
/// Computes in **O(1)** time
pub fn peek_min(&self) -> Option<(&I, &P)> {
self.find_min().and_then(|i| {
self.store
.map
.get_index(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
})
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the given `DoublePriorityQueue`. The collection may reserve more space to avoid
/// frequent reallocations. After calling `reserve`, capacity will be
/// greater than or equal to `self.len() + additional`. Does nothing if
/// capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
pub fn reserve(&mut self, additional: usize) {
self.store.reserve(additional);
}
/// Reserve capacity for `additional` more elements, without over-allocating.
///
/// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
/// frequent re-allocations. However, the underlying data structures may still have internal
/// capacity requirements, and the allocator itself may give more space than requested, so this
/// cannot be relied upon to be precisely minimal.
///
/// Computes in **O(n)** time.
pub fn reserve_exact(&mut self, additional: usize) {
self.store.reserve_exact(additional);
}
/// Try to reserve capacity for at least `additional` more elements.
///
/// Computes in O(n) time.
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.store.try_reserve(additional)
}
/// Try to reserve capacity for `additional` more elements, without over-allocating.
///
/// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
/// frequent re-allocations. However, the underlying data structures may still have internal
/// capacity requirements, and the allocator itself may give more space than requested, so this
/// cannot be relied upon to be precisely minimal.
///
/// Computes in **O(n)** time.
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.store.try_reserve_exact(additional)
}
}
impl<I, P, H> DoublePriorityQueue<I, P, H>
where
P: Ord,
{
/// Return an iterator in arbitrary order over the
/// (item, priority) elements in the queue.
///
/// The item and the priority are mutable references, but it's a logic error
/// to modify the item in a way that change the result of `Hash` or `Eq`.
///
/// It's *not* an error, instead, to modify the priorities, because the heap
/// will be rebuilt once the `IterMut` goes out of scope. It would be
/// rebuilt even if no priority value would have been modified, but the
/// procedure will not move anything, but just compare the priorities.
pub fn iter_mut(&mut self) -> IterMut<I, P, H> {
IterMut::new(self)
}
/// Returns the couple (item, priority) with the greatest
/// priority in the queue, or None if it is empty.
///
/// Computes in **O(1)** time
pub fn peek_max(&self) -> Option<(&I, &P)> {
self.find_max().and_then(|i| {
self.store
.map
.get_index(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
})
}
/// Removes the item with the lowest priority from
/// the priority queue and returns the pair (item, priority),
/// or None if the queue is empty.
pub fn pop_min(&mut self) -> Option<(I, P)> {
self.find_min().and_then(|i| {
let r = self.store.swap_remove(i);
self.heapify(i);
r
})
}
/// Removes the item with the greatest priority from
/// the priority queue and returns the pair (item, priority),
/// or None if the queue is empty.
pub fn pop_max(&mut self) -> Option<(I, P)> {
self.find_max().and_then(|i| {
let r = self.store.swap_remove(i);
self.heapify(i);
r
})
}
/// Implements a HeapSort.
///
/// Consumes the PriorityQueue and returns a vector
/// with all the items sorted from the one associated to
/// the lowest priority to the highest.
pub fn into_ascending_sorted_vec(mut self) -> Vec<I> {
let mut res = Vec::with_capacity(self.store.size);
while let Some((i, _)) = self.pop_min() {
res.push(i);
}
res
}
/// Implements a HeapSort
///
/// Consumes the PriorityQueue and returns a vector
/// with all the items sorted from the one associated to
/// the highest priority to the lowest.
pub fn into_descending_sorted_vec(mut self) -> Vec<I> {
let mut res = Vec::with_capacity(self.store.size);
while let Some((i, _)) = self.pop_max() {
res.push(i);
}
res
}
/// Generates a new double ended iterator from self that
/// will extract the elements from the one with the lowest priority
/// to the highest one.
pub fn into_sorted_iter(self) -> IntoSortedIter<I, P, H> {
IntoSortedIter { pq: self }
}
}
impl<I, P, H> DoublePriorityQueue<I, P, H>
where
H: BuildHasher,
{
/// Returns the couple (item, priority) with the lowest
/// priority in the queue, or None if it is empty.
///
/// The item is a mutable reference, but it's a logic error to modify it
/// in a way that change the result of `Hash` or `Eq`.
///
/// The priority cannot be modified with a call to this function.
/// To modify the priority use `push`, `change_priority` or
/// `change_priority_by`.
///
/// Computes in **O(1)** time
pub fn peek_min_mut(&mut self) -> Option<(&mut I, &P)> {
use indexmap::map::MutableKeys;
self.find_min()
.and_then(move |i| {
self.store
.map
.get_index_mut2(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
})
.map(|(k, v)| (k, &*v))
}
}
impl<I, P, H> DoublePriorityQueue<I, P, H>
where
P: Ord,
H: BuildHasher,
{
/// Returns the couple (item, priority) with the greatest
/// priority in the queue, or None if it is empty.
///
/// The item is a mutable reference, but it's a logic error to modify it
/// in a way that change the result of `Hash` or `Eq`.
///
/// The priority cannot be modified with a call to this function.
/// To modify the priority use `push`, `change_priority` or
/// `change_priority_by`.
///
/// Computes in **O(1)** time
pub fn peek_max_mut(&mut self) -> Option<(&mut I, &P)> {
use indexmap::map::MutableKeys;
self.find_max()
.and_then(move |i| {
self.store
.map
.get_index_mut2(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
})
.map(|(k, v)| (k, &*v))
}
}
impl<I, P, H> DoublePriorityQueue<I, P, H>
where
P: Ord,
I: Hash + Eq,
H: BuildHasher,
{
/// Insert the item-priority pair into the queue.
///
/// If an element equal to `item` was already into the queue,
/// it is updated and the old value of its priority is returned in `Some`;
/// otherwise, returns `None`.
///
/// Computes in **O(log(N))** time.
pub fn push(&mut self, item: I, priority: P) -> Option<P> {
use indexmap::map::Entry::*;
let mut pos = Position(0);
let mut oldp = None;
match self.store.map.entry(item) {
Occupied(mut e) => {
oldp = Some(replace(e.get_mut(), priority));
pos = unsafe { *self.store.qp.get_unchecked(e.index()) };
}
Vacant(e) => {
e.insert(priority);
}
}
if oldp.is_some() {
self.up_heapify(pos);
return oldp;
}
// get a reference to the priority
// copy the current size of the heap
let i = self.len();
// add the new element in the qp vector as the last in the heap
self.store.qp.push(Position(i));
self.store.heap.push(Index(i));
self.bubble_up(Position(i), Index(i));
self.store.size += 1;
None
}
/// Increase the priority of an existing item in the queue, or
/// insert it if not present.
///
/// If an element equal to `item` is already in the queue with a
/// lower priority, its priority is increased to the new one
/// without replacing the element and the old priority is returned.
/// Otherwise, the new element is inserted into the queue.
///
/// Returns `Some` if an element equal to `item` is already in the
/// queue. If its priority is higher then `priority`, the latter is returned back,
/// otherwise, the old priority is contained in the Option.
/// If the item is not in the queue, `None` is returned.
///
/// Computes in **O(log(N))** time.
pub fn push_increase(&mut self, item: I, priority: P) -> Option<P> {
if self.get_priority(&item).map_or(true, |p| priority > *p) {
self.push(item, priority)
} else {
Some(priority)
}
}
/// Decrease the priority of an existing item in the queue, or
/// insert it if not present.
///
/// If an element equal to `item` is already in the queue with a
/// higher priority, its priority is decreased to the new one
/// without replacing the element and the old priority is returned.
/// Otherwise, the new element is inserted into the queue.
///
/// Returns `Some` if an element equal to `item` is already in the
/// queue. If its priority is lower then `priority`, the latter is returned back,
/// otherwise, the old priority is contained in the Option.
/// If the item is not in the queue, `None` is returned.
///
/// Computes in **O(log(N))** time.
pub fn push_decrease(&mut self, item: I, priority: P) -> Option<P> {
if self.get_priority(&item).map_or(true, |p| priority < *p) {
self.push(item, priority)
} else {
Some(priority)
}
}
/// Change the priority of an Item returning the old value of priority,
/// or `None` if the item wasn't in the queue.
///
/// The argument `item` is only used for lookup, and is not used to overwrite the item's data
/// in the priority queue.
///
/// The item is found in **O(1)** thanks to the hash table.
/// The operation is performed in **O(log(N))** time.
pub fn change_priority<Q: ?Sized>(&mut self, item: &Q, new_priority: P) -> Option<P>
where
I: Borrow<Q>,
Q: Eq + Hash,
{
self.store
.change_priority(item, new_priority)
.map(|(r, pos)| {
self.up_heapify(pos);
r
})
}
/// Change the priority of an Item using the provided function.
/// Return a boolean value where `true` means the item was in the queue and update was successful
///
/// The argument `item` is only used for lookup, and is not used to overwrite the item's data
/// in the priority queue.
///
/// The item is found in **O(1)** thanks to the hash table.
/// The operation is performed in **O(log(N))** time (worst case).
pub fn change_priority_by<Q: ?Sized, F>(&mut self, item: &Q, priority_setter: F) -> bool
where
I: Borrow<Q>,
Q: Eq + Hash,
F: FnOnce(&mut P),
{
self.store
.change_priority_by(item, priority_setter)
.map(|pos| {
self.up_heapify(pos);
})
.is_some()
}
/// Get the priority of an item, or `None`, if the item is not in the queue
pub fn get_priority<Q: ?Sized>(&self, item: &Q) -> Option<&P>
where
I: Borrow<Q>,
Q: Eq + Hash,
{
self.store.get_priority(item)
}
/// Get the couple (item, priority) of an arbitrary element, as reference
/// or `None` if the item is not in the queue.
pub fn get<Q: ?Sized>(&self, item: &Q) -> Option<(&I, &P)>
where
I: Borrow<Q>,
Q: Eq + Hash,
{
self.store.get(item)
}
/// Get the couple (item, priority) of an arbitrary element, or `None`
/// if the item was not in the queue.
///
/// The item is a mutable reference, but it's a logic error to modify it
/// in a way that change the result of `Hash` or `Eq`.
///
/// The priority cannot be modified with a call to this function.
/// To modify the priority use `push`, `change_priority` or
/// `change_priority_by`.
pub fn get_mut<Q: ?Sized>(&mut self, item: &Q) -> Option<(&mut I, &P)>
where
I: Borrow<Q>,
Q: Eq + Hash,
{
self.store.get_mut(item)
}
/// Remove an arbitrary element from the priority queue.
/// Returns the (item, priority) couple or None if the item
/// is not found in the queue.
///
/// The operation is performed in **O(log(N))** time (worst case).
pub fn remove<Q: ?Sized>(&mut self, item: &Q) -> Option<(I, P)>
where
I: Borrow<Q>,
Q: Eq + Hash,
{
self.store.remove(item).map(|(item, priority, pos)| {
if pos.0 < self.len() {
self.up_heapify(pos);
}
(item, priority)
})
}
/// Returns the items not ordered
pub fn into_vec(self) -> Vec<I> {
self.store.into_vec()
}
/// Drops all items from the priority queue
pub fn clear(&mut self) {
self.store.clear();
}
/// Move all items of the `other` queue to `self`
/// ignoring the items Eq to elements already in `self`
/// At the end, `other` will be empty.
///
/// **Note** that at the end, the priority of the duplicated elements
/// inside self may be the one of the elements in other,
/// if other is longer than self
pub fn append(&mut self, other: &mut Self) {
self.store.append(&mut other.store);
self.heap_build();
}
}
impl<I, P, H> DoublePriorityQueue<I, P, H> {
/// Returns the index of the min element
fn find_min(&self) -> Option<Position> {
match self.len() {
0 => None,
_ => Some(Position(0)),
}
}
}
impl<I, P, H> DoublePriorityQueue<I, P, H>
where
P: Ord,
{
/**************************************************************************/
/* internal functions */
fn heapify(&mut self, i: Position) {
if self.len() <= 1 {
return;
}
if level(i) % 2 == 0 {
self.heapify_min(i)
} else {
self.heapify_max(i)
}
}
fn heapify_min(&mut self, mut i: Position) {
while i <= parent(Position(self.len() - 1)) {
let m = i;
let l = left(i);
let r = right(i);
// Minimum of childs and grandchilds
i = *[l, r, left(l), right(l), left(r), right(r)]
.iter()
.map_while(|i| self.store.heap.get(i.0).map(|index| (i, index)))
.min_by_key(|(_, index)| {
self.store
.map
.get_index(index.0)
.map(|(_, priority)| priority)
.unwrap()
})
.unwrap()
.0;
if unsafe {
self.store.get_priority_from_position(i) < self.store.get_priority_from_position(m)
} {
self.store.swap(i, m);
if i > r {
// i is a grandchild of m
let p = parent(i);
if unsafe {
self.store.get_priority_from_position(i)
> self.store.get_priority_from_position(p)
} {
self.store.swap(i, p);
}
} else {
break;
}
} else {
break;
}
}
}
fn heapify_max(&mut self, mut i: Position) {
while i <= parent(Position(self.len() - 1)) {
let m = i;
let l = left(i);
let r = right(i);
// Minimum of childs and grandchilds
i = *[l, r, left(l), right(l), left(r), right(r)]
.iter()
.map_while(|i| self.store.heap.get(i.0).map(|index| (i, index)))
.max_by_key(|(_, index)| {
self.store
.map
.get_index(index.0)
.map(|(_, priority)| priority)
.unwrap()
})
.unwrap()
.0;
if unsafe {
self.store.get_priority_from_position(i) > self.store.get_priority_from_position(m)
} {
self.store.swap(i, m);
if i > r {
// i is a grandchild of m
let p = parent(i);
if unsafe {
self.store.get_priority_from_position(i)
< self.store.get_priority_from_position(p)
} {
self.store.swap(i, p);
}
} else {
break;
}
} else {
break;
}
}
}
fn bubble_up(&mut self, mut position: Position, map_position: Index) -> Position {
let priority = self.store.map.get_index(map_position.0).unwrap().1;
if position.0 > 0 {
let parent = parent(position);
let parent_priority = unsafe { self.store.get_priority_from_position(parent) };
let parent_index = unsafe { *self.store.heap.get_unchecked(parent.0) };
position = match (level(position) % 2 == 0, parent_priority < priority) {
// on a min level and greater then parent
(true, true) => {
unsafe {
*self.store.heap.get_unchecked_mut(position.0) = parent_index;
*self.store.qp.get_unchecked_mut(parent_index.0) = position;
}
self.bubble_up_max(parent, map_position)
}
// on a min level and less then parent
(true, false) => self.bubble_up_min(position, map_position),
// on a max level and greater then parent
(false, true) => self.bubble_up_max(position, map_position),
// on a max level and less then parent
(false, false) => {
unsafe {
*self.store.heap.get_unchecked_mut(position.0) = parent_index;
*self.store.qp.get_unchecked_mut(parent_index.0) = position;
}
self.bubble_up_min(parent, map_position)
}
}
}
unsafe {
// put the new element into the heap and
// update the qp translation table and the size
*self.store.heap.get_unchecked_mut(position.0) = map_position;
*self.store.qp.get_unchecked_mut(map_position.0) = position;
}
position
}
fn bubble_up_min(&mut self, mut position: Position, map_position: Index) -> Position {
let priority = self.store.map.get_index(map_position.0).unwrap().1;
let mut grand_parent = Position(0);
while if position.0 > 0 && parent(position).0 > 0 {
grand_parent = parent(parent(position));
(unsafe { self.store.get_priority_from_position(grand_parent) }) > priority
} else {
false
} {
unsafe {
let grand_parent_index = *self.store.heap.get_unchecked(grand_parent.0);
*self.store.heap.get_unchecked_mut(position.0) = grand_parent_index;
*self.store.qp.get_unchecked_mut(grand_parent_index.0) = position;
}
position = grand_parent;
}
position
}
fn bubble_up_max(&mut self, mut position: Position, map_position: Index) -> Position {
let priority = self.store.map.get_index(map_position.0).unwrap().1;
let mut grand_parent = Position(0);
while if position.0 > 0 && parent(position).0 > 0 {
grand_parent = parent(parent(position));
(unsafe { self.store.get_priority_from_position(grand_parent) }) < priority
} else {
false
} {
unsafe {
let grand_parent_index = *self.store.heap.get_unchecked(grand_parent.0);
*self.store.heap.get_unchecked_mut(position.0) = grand_parent_index;
*self.store.qp.get_unchecked_mut(grand_parent_index.0) = position;
}
position = grand_parent;
}
position
}
fn up_heapify(&mut self, i: Position) {
let tmp = unsafe { *self.store.heap.get_unchecked(i.0) };
let pos = self.bubble_up(i, tmp);
if i != pos {
self.heapify(i)
}
self.heapify(pos);
}
/// Internal function that transform the `heap`
/// vector in a heap with its properties
///
/// Computes in **O(N)**
pub(crate) fn heap_build(&mut self) {
if self.is_empty() {
return;
}
for i in (0..=parent(Position(self.len())).0).rev() {
self.heapify(Position(i));
}
}
/// Returns the index of the max element
fn find_max(&self) -> Option<Position> {
match self.len() {
0 => None,
1 => Some(Position(0)),
2 => Some(Position(1)),
_ => Some(
*[Position(1), Position(2)]
.iter()
.max_by_key(|i| unsafe { self.store.get_priority_from_position(**i) })
.unwrap(),
),
}
}
}
//FIXME: fails when the vector contains repeated items
// FIXED: repeated items ignored
impl<I, P, H> From<Vec<(I, P)>> for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq,
P: Ord,
H: BuildHasher + Default,
{
fn from(vec: Vec<(I, P)>) -> Self {
let store = Store::from(vec);
let mut pq = DoublePriorityQueue { store };
pq.heap_build();
pq
}
}
use crate::PriorityQueue;
impl<I, P, H> From<PriorityQueue<I, P, H>> for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq,
P: Ord,
H: BuildHasher,
{
fn from(pq: PriorityQueue<I, P, H>) -> Self {
let store = pq.store;
let mut this = Self { store };
this.heap_build();
this
}
}
//FIXME: fails when the iterator contains repeated items
// FIXED: the item inside the pq is updated
// so there are two functions with different behaviours.
impl<I, P, H> FromIterator<(I, P)> for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq,
P: Ord,
H: BuildHasher + Default,
{
fn from_iter<IT>(iter: IT) -> Self
where
IT: IntoIterator<Item = (I, P)>,
{
let store = Store::from_iter(iter);
let mut pq = DoublePriorityQueue { store };
pq.heap_build();
pq
}
}
impl<I, P, H> IntoIterator for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq,
P: Ord,
H: BuildHasher,
{
type Item = (I, P);
type IntoIter = IntoIter<I, P>;
fn into_iter(self) -> IntoIter<I, P> {
self.store.into_iter()
}
}
impl<'a, I, P, H> IntoIterator for &'a DoublePriorityQueue<I, P, H>
where
I: Hash + Eq,
P: Ord,
H: BuildHasher,
{
type Item = (&'a I, &'a P);
type IntoIter = Iter<'a, I, P>;
fn into_iter(self) -> Iter<'a, I, P> {
self.store.iter()
}
}
impl<'a, I, P, H> IntoIterator for &'a mut DoublePriorityQueue<I, P, H>
where
I: Hash + Eq,
P: Ord,
H: BuildHasher,
{
type Item = (&'a mut I, &'a mut P);
type IntoIter = IterMut<'a, I, P, H>;
fn into_iter(self) -> IterMut<'a, I, P, H> {
IterMut::new(self)
}
}
impl<I, P, H> Extend<(I, P)> for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq,
P: Ord,
H: BuildHasher,
{
fn extend<T: IntoIterator<Item = (I, P)>>(&mut self, iter: T) {
let iter = iter.into_iter();
let (min, max) = iter.size_hint();
let rebuild = if let Some(max) = max {
self.reserve(max);
better_to_rebuild(self.len(), max)
} else if min != 0 {
self.reserve(min);
better_to_rebuild(self.len(), min)
} else {
false
};
if rebuild {
self.store.extend(iter);
self.heap_build();
} else {
for (item, priority) in iter {
self.push(item, priority);
}
}
}
}
use std::fmt;
impl<I, P, H> fmt::Debug for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq + fmt::Debug,
P: Ord + fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.store.fmt(f)
}
}
use std::cmp::PartialEq;
impl<I, P1, H1, P2, H2> PartialEq<DoublePriorityQueue<I, P2, H2>> for DoublePriorityQueue<I, P1, H1>
where
I: Hash + Eq,
P1: Ord,
P1: PartialEq<P2>,
Option<P1>: PartialEq<Option<P2>>,
P2: Ord,
H1: BuildHasher,
H2: BuildHasher,
{
fn eq(&self, other: &DoublePriorityQueue<I, P2, H2>) -> bool {
self.store == other.store
}
}
/// Compute the index of the left child of an item from its index
#[inline(always)]
const fn left(i: Position) -> Position {
Position((i.0 * 2) + 1)
}
/// Compute the index of the right child of an item from its index
#[inline(always)]
const fn right(i: Position) -> Position {
Position((i.0 * 2) + 2)
}
/// Compute the index of the parent element in the heap from its index
#[inline(always)]
const fn parent(i: Position) -> Position {
Position((i.0 - 1) / 2)
}
// Compute the level of a node from its index
#[inline(always)]
const fn level(i: Position) -> usize {
log2_fast(i.0 + 1)
}
#[inline(always)]
const fn log2_fast(x: usize) -> usize {
(usize::BITS - x.leading_zeros() - 1) as usize
}
// `rebuild` takes O(len1 + len2) operations
// and about 2 * (len1 + len2) comparisons in the worst case
// while `extend` takes O(len2 * log_2(len1)) operations
// and about 1 * len2 * log_2(len1) comparisons in the worst case,
// assuming len1 >= len2.
fn better_to_rebuild(len1: usize, len2: usize) -> bool {
// log(1) == 0, so the inequation always falsy
// log(0) is inapplicable and produces panic
if len1 <= 1 {
return false;
}
2 * (len1 + len2) < len2 * log2_fast(len1)
}
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
mod serde {
use std::cmp::{Eq, Ord};
use std::hash::{BuildHasher, Hash};
use serde::de::{Deserialize, Deserializer};
use serde::ser::{Serialize, Serializer};
use super::DoublePriorityQueue;
use crate::store::Store;
impl<I, P, H> Serialize for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq + Serialize,
P: Ord + Serialize,
H: BuildHasher,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.store.serialize(serializer)
}
}
impl<'de, I, P, H> Deserialize<'de> for DoublePriorityQueue<I, P, H>
where
I: Hash + Eq + Deserialize<'de>,
P: Ord + Deserialize<'de>,
H: BuildHasher + Default,
{
fn deserialize<D>(deserializer: D) -> Result<DoublePriorityQueue<I, P, H>, D::Error>
where
D: Deserializer<'de>,
{
Store::deserialize(deserializer).map(|store| {
let mut pq = DoublePriorityQueue { store };
pq.heap_build();
pq
})
}
}
}