priority_queue/double_priority_queue/mod.rs
1/*
2 * Copyright 2017 Gianmarco Garrisi
3 *
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU Lesser General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version, or (at your option) under the terms
9 * of the Mozilla Public License version 2.0.
10 *
11 * ----
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * ----
22 *
23 * This Source Code Form is subject to the terms of the Mozilla Public License,
24 * v. 2.0. If a copy of the MPL was not distributed with this file, You can
25 * obtain one at http://mozilla.org/MPL/2.0/.
26 *
27 */
28//! This module contains the [`DoublePriorityQueue`] type and the related iterators.
29//!
30//! See the type level documentation for more details and examples.
31
32pub mod iterators;
33
34#[cfg(not(feature = "std"))]
35use std::vec::Vec;
36
37use crate::core_iterators::*;
38use crate::store::{Index, Position, Store};
39use crate::TryReserveError;
40use iterators::*;
41
42use std::borrow::Borrow;
43use std::cmp::{Eq, Ord};
44#[cfg(feature = "std")]
45use std::collections::hash_map::RandomState;
46use std::hash::{BuildHasher, Hash};
47use std::iter::{Extend, FromIterator, IntoIterator, Iterator};
48use std::mem::replace;
49
50/// A double priority queue with efficient change function to change the priority of an
51/// element.
52///
53/// The priority is of type P, that must implement `std::cmp::Ord`.
54///
55/// The item is of type I, that must implement `Hash` and `Eq`.
56///
57/// Implemented as a heap of indexes, stores the items inside an `IndexMap`
58/// to be able to retrieve them quickly.
59///
60/// With this data structure it is possible to efficiently extract both
61/// the maximum and minimum elements arbitrarily.
62///
63/// If your need is to always extract the minimum, use a
64/// `PriorityQueue<I, Reverse<P>>` wrapping
65/// your priorities in the standard wrapper
66/// [`Reverse<T>`](https://doc.rust-lang.org/std/cmp/struct.Reverse.html).
67///
68///
69/// # Example
70/// ```rust
71/// use priority_queue::DoublePriorityQueue;
72///
73/// let mut pq = DoublePriorityQueue::new();
74///
75/// assert!(pq.is_empty());
76/// pq.push("Apples", 5);
77/// pq.push("Bananas", 8);
78/// pq.push("Strawberries", 23);
79///
80/// assert_eq!(pq.peek_max(), Some((&"Strawberries", &23)));
81/// assert_eq!(pq.peek_min(), Some((&"Apples", &5)));
82///
83/// pq.change_priority("Bananas", 25);
84/// assert_eq!(pq.peek_max(), Some((&"Bananas", &25)));
85///
86/// for (item, _) in pq.into_sorted_iter() {
87/// println!("{}", item);
88/// }
89/// ```
90#[derive(Clone)]
91#[cfg(feature = "std")]
92pub struct DoublePriorityQueue<I, P, H = RandomState> {
93 pub(crate) store: Store<I, P, H>,
94}
95
96#[derive(Clone)]
97#[cfg(not(feature = "std"))]
98pub struct DoublePriorityQueue<I, P, H> {
99 pub(crate) store: Store<I, P, H>,
100}
101
102// do not [derive(Eq)] to loosen up trait requirements for other types and impls
103impl<I, P, H> Eq for DoublePriorityQueue<I, P, H>
104where
105 I: Hash + Eq,
106 P: Ord,
107 H: BuildHasher,
108{
109}
110
111impl<I, P, H> Default for DoublePriorityQueue<I, P, H>
112where
113 I: Hash + Eq,
114 P: Ord,
115 H: BuildHasher + Default,
116{
117 fn default() -> Self {
118 Self::with_default_hasher()
119 }
120}
121
122#[cfg(feature = "std")]
123impl<I, P> DoublePriorityQueue<I, P>
124where
125 P: Ord,
126 I: Hash + Eq,
127{
128 /// Creates an empty `DoublePriorityQueue`
129 pub fn new() -> Self {
130 Self::with_capacity(0)
131 }
132
133 /// Creates an empty `DoublePriorityQueue` with the specified capacity.
134 pub fn with_capacity(capacity: usize) -> Self {
135 Self::with_capacity_and_default_hasher(capacity)
136 }
137}
138
139impl<I, P, H> DoublePriorityQueue<I, P, H>
140where
141 P: Ord,
142 I: Hash + Eq,
143 H: BuildHasher + Default,
144{
145 /// Creates an empty `DoublePriorityQueue` with the default hasher
146 pub fn with_default_hasher() -> Self {
147 Self::with_capacity_and_default_hasher(0)
148 }
149
150 /// Creates an empty `DoublePriorityQueue` with the specified capacity and default hasher
151 pub fn with_capacity_and_default_hasher(capacity: usize) -> Self {
152 Self::with_capacity_and_hasher(capacity, H::default())
153 }
154}
155
156impl<I, P, H> DoublePriorityQueue<I, P, H>
157where
158 P: Ord,
159 I: Hash + Eq,
160 H: BuildHasher,
161{
162 /// Creates an empty `DoublePriorityQueue` with the specified hasher
163 pub fn with_hasher(hash_builder: H) -> Self {
164 Self::with_capacity_and_hasher(0, hash_builder)
165 }
166
167 /// Creates an empty `DoublePriorityQueue` with the specified capacity and hasher
168 ///
169 /// The internal collections will be able to hold at least `capacity`
170 /// elements without reallocating.
171 /// If `capacity` is 0, there will be no allocation.
172 pub fn with_capacity_and_hasher(capacity: usize, hash_builder: H) -> Self {
173 Self {
174 store: Store::with_capacity_and_hasher(capacity, hash_builder),
175 }
176 }
177}
178
179impl<I, P, H> DoublePriorityQueue<I, P, H> {
180 /// Returns the number of elements the internal map can hold without
181 /// reallocating.
182 ///
183 /// This number is a lower bound; the map might be able to hold more,
184 /// but is guaranteed to be able to hold at least this many.
185 pub fn capacity(&self) -> usize {
186 self.store.capacity()
187 }
188
189 /// Returns an iterator in arbitrary order over the
190 /// (item, priority) elements in the queue
191 pub fn iter(&self) -> Iter<I, P> {
192 self.store.iter()
193 }
194
195 /// Clears the PriorityQueue, returning an iterator over the removed elements in arbitrary order.
196 /// If the iterator is dropped before being fully consumed, it drops the remaining elements in arbitrary order.
197 pub fn drain(&mut self) -> Drain<I, P> {
198 self.store.drain()
199 }
200
201 /// Shrinks the capacity of the internal data structures
202 /// that support this operation as much as possible.
203 pub fn shrink_to_fit(&mut self) {
204 self.store.shrink_to_fit();
205 }
206
207 /// Returns the number of elements in the priority queue.
208 #[inline]
209 pub fn len(&self) -> usize {
210 self.store.len()
211 }
212
213 /// Returns true if the priority queue contains no elements.
214 pub fn is_empty(&self) -> bool {
215 self.store.is_empty()
216 }
217
218 /// Returns the couple (item, priority) with the lowest
219 /// priority in the queue, or None if it is empty.
220 ///
221 /// Computes in **O(1)** time
222 pub fn peek_min(&self) -> Option<(&I, &P)> {
223 self.find_min().and_then(|i| {
224 self.store
225 .map
226 .get_index(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
227 })
228 }
229
230 /// Reserves capacity for at least `additional` more elements to be inserted
231 /// in the given `DoublePriorityQueue`. The collection may reserve more space to avoid
232 /// frequent reallocations. After calling `reserve`, capacity will be
233 /// greater than or equal to `self.len() + additional`. Does nothing if
234 /// capacity is already sufficient.
235 ///
236 /// # Panics
237 ///
238 /// Panics if the new capacity overflows `usize`.
239 pub fn reserve(&mut self, additional: usize) {
240 self.store.reserve(additional);
241 }
242
243 /// Reserve capacity for `additional` more elements, without over-allocating.
244 ///
245 /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
246 /// frequent re-allocations. However, the underlying data structures may still have internal
247 /// capacity requirements, and the allocator itself may give more space than requested, so this
248 /// cannot be relied upon to be precisely minimal.
249 ///
250 /// Computes in **O(n)** time.
251 pub fn reserve_exact(&mut self, additional: usize) {
252 self.store.reserve_exact(additional);
253 }
254
255 /// Try to reserve capacity for at least `additional` more elements.
256 ///
257 /// Computes in O(n) time.
258 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
259 self.store.try_reserve(additional)
260 }
261
262 /// Try to reserve capacity for `additional` more elements, without over-allocating.
263 ///
264 /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
265 /// frequent re-allocations. However, the underlying data structures may still have internal
266 /// capacity requirements, and the allocator itself may give more space than requested, so this
267 /// cannot be relied upon to be precisely minimal.
268 ///
269 /// Computes in **O(n)** time.
270 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
271 self.store.try_reserve_exact(additional)
272 }
273}
274impl<I, P, H> DoublePriorityQueue<I, P, H>
275where
276 P: Ord,
277{
278 /// Return an iterator in arbitrary order over the
279 /// (item, priority) elements in the queue.
280 ///
281 /// The item and the priority are mutable references, but it's a logic error
282 /// to modify the item in a way that change the result of `Hash` or `Eq`.
283 ///
284 /// It's *not* an error, instead, to modify the priorities, because the heap
285 /// will be rebuilt once the `IterMut` goes out of scope. It would be
286 /// rebuilt even if no priority value would have been modified, but the
287 /// procedure will not move anything, but just compare the priorities.
288 pub fn iter_mut(&mut self) -> IterMut<I, P, H> {
289 IterMut::new(self)
290 }
291
292 /// Returns the couple (item, priority) with the greatest
293 /// priority in the queue, or None if it is empty.
294 ///
295 /// Computes in **O(1)** time
296 pub fn peek_max(&self) -> Option<(&I, &P)> {
297 self.find_max().and_then(|i| {
298 self.store
299 .map
300 .get_index(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
301 })
302 }
303
304 /// Removes the item with the lowest priority from
305 /// the priority queue and returns the pair (item, priority),
306 /// or None if the queue is empty.
307 pub fn pop_min(&mut self) -> Option<(I, P)> {
308 self.find_min().and_then(|i| {
309 let r = self.store.swap_remove(i);
310 self.heapify(i);
311 r
312 })
313 }
314
315 /// Removes the item with the greatest priority from
316 /// the priority queue and returns the pair (item, priority),
317 /// or None if the queue is empty.
318 pub fn pop_max(&mut self) -> Option<(I, P)> {
319 self.find_max().and_then(|i| {
320 let r = self.store.swap_remove(i);
321 self.heapify(i);
322 r
323 })
324 }
325
326 /// Implements a HeapSort.
327 ///
328 /// Consumes the PriorityQueue and returns a vector
329 /// with all the items sorted from the one associated to
330 /// the lowest priority to the highest.
331 pub fn into_ascending_sorted_vec(mut self) -> Vec<I> {
332 let mut res = Vec::with_capacity(self.store.size);
333 while let Some((i, _)) = self.pop_min() {
334 res.push(i);
335 }
336 res
337 }
338
339 /// Implements a HeapSort
340 ///
341 /// Consumes the PriorityQueue and returns a vector
342 /// with all the items sorted from the one associated to
343 /// the highest priority to the lowest.
344 pub fn into_descending_sorted_vec(mut self) -> Vec<I> {
345 let mut res = Vec::with_capacity(self.store.size);
346 while let Some((i, _)) = self.pop_max() {
347 res.push(i);
348 }
349 res
350 }
351
352 /// Generates a new double ended iterator from self that
353 /// will extract the elements from the one with the lowest priority
354 /// to the highest one.
355 pub fn into_sorted_iter(self) -> IntoSortedIter<I, P, H> {
356 IntoSortedIter { pq: self }
357 }
358}
359
360impl<I, P, H> DoublePriorityQueue<I, P, H>
361where
362 H: BuildHasher,
363{
364 /// Returns the couple (item, priority) with the lowest
365 /// priority in the queue, or None if it is empty.
366 ///
367 /// The item is a mutable reference, but it's a logic error to modify it
368 /// in a way that change the result of `Hash` or `Eq`.
369 ///
370 /// The priority cannot be modified with a call to this function.
371 /// To modify the priority use [`push`](DoublePriorityQueue::push),
372 /// [`change_priority`](DoublePriorityQueue::change_priority) or
373 /// [`change_priority_by`](DoublePriorityQueue::change_priority_by).
374 ///
375 /// Computes in **O(1)** time
376 pub fn peek_min_mut(&mut self) -> Option<(&mut I, &P)> {
377 use indexmap::map::MutableKeys;
378
379 self.find_min()
380 .and_then(move |i| {
381 self.store
382 .map
383 .get_index_mut2(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
384 })
385 .map(|(k, v)| (k, &*v))
386 }
387}
388
389impl<I, P, H> DoublePriorityQueue<I, P, H>
390where
391 P: Ord,
392 H: BuildHasher,
393{
394 /// Returns the couple (item, priority) with the greatest
395 /// priority in the queue, or None if it is empty.
396 ///
397 /// The item is a mutable reference, but it's a logic error to modify it
398 /// in a way that change the result of `Hash` or `Eq`.
399 ///
400 /// The priority cannot be modified with a call to this function.
401 /// To modify the priority use [`push`](DoublePriorityQueue::push),
402 /// [`change_priority`](DoublePriorityQueue::change_priority) or
403 /// [`change_priority_by`](DoublePriorityQueue::change_priority_by).
404 ///
405 /// Computes in **O(1)** time
406 pub fn peek_max_mut(&mut self) -> Option<(&mut I, &P)> {
407 use indexmap::map::MutableKeys;
408 self.find_max()
409 .and_then(move |i| {
410 self.store
411 .map
412 .get_index_mut2(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
413 })
414 .map(|(k, v)| (k, &*v))
415 }
416}
417
418impl<I, P, H> DoublePriorityQueue<I, P, H>
419where
420 P: Ord,
421 I: Hash + Eq,
422 H: BuildHasher,
423{
424 /// Retains only the elements specified by the `predicate`.
425 ///
426 /// In other words, remove all elements e for which `predicate(&i, &p)` returns `false`.
427 /// The elements are visited in arbitrary order.
428 pub fn retain<F>(&mut self, predicate: F)
429 where
430 F: FnMut(&I, &P) -> bool,
431 {
432 self.store.retain(predicate);
433 self.heap_build();
434 }
435
436 /// Retains only the elements specified by the `predicate`.
437 ///
438 /// In other words, remove all elements e for which `predicate(&mut i, &mut p)` returns `false`.
439 /// The elements are visited in arbitrary order.
440 ///
441 /// The `predicate` receives mutable references to both the item and
442 /// the priority.
443 ///
444 /// It's a logical error to change the item in a way
445 /// that changes the result of `Hash` or `Eq`.
446 ///
447 /// The `predicate` can change the priority. If the element is retained,
448 /// it will have the updated one.
449 pub fn retain_mut<F>(&mut self, predicate: F)
450 where
451 F: FnMut(&mut I, &mut P) -> bool,
452 {
453 self.store.retain_mut(predicate);
454 self.heap_build();
455 }
456
457 /// Removes the item with the lowest priority from
458 /// the priority queue if the predicate returns `true`.
459 ///
460 /// Returns the pair (item, priority), or None if the
461 /// queue is empty or the predicate returns `false`.
462 ///
463 /// The predicate receives mutable references to both the item and
464 /// the priority.
465 ///
466 /// It's a logical error to change the item in a way
467 /// that changes the result of `Hash` or `EQ`.
468 ///
469 /// The predicate can change the priority. If it returns true, the
470 /// returned couple will have the updated priority, otherwise, the
471 /// heap structural property will be restored.
472 ///
473 /// # Example
474 /// ```
475 /// # use priority_queue::DoublePriorityQueue;
476 /// let mut pq = DoublePriorityQueue::new();
477 /// pq.push("Apples", 5);
478 /// pq.push("Bananas", 10);
479 /// assert_eq!(pq.pop_min_if(|i, p| {
480 /// *p = 15;
481 /// false
482 /// }), None);
483 /// assert_eq!(pq.pop_min(), Some(("Bananas", 10)));
484 /// ```
485 pub fn pop_min_if<F>(&mut self, f: F) -> Option<(I, P)>
486 where
487 F: FnOnce(&mut I, &mut P) -> bool,
488 {
489 self.find_min().and_then(|i| {
490 let r = self.store.swap_remove_if(i, f);
491 self.heapify(i);
492 r
493 })
494 }
495
496 /// Removes the item with the greatest priority from
497 /// the priority queue if the predicate returns `true`.
498 ///
499 /// Returns the pair (item, priority), or None if the
500 /// queue is empty or the predicate returns `false`.
501 ///
502 /// The predicate receives mutable references to both the item and
503 /// the priority.
504 ///
505 /// It's a logical error to change the item in a way
506 /// that changes the result of `Hash` or `EQ`.
507 ///
508 /// The predicate can change the priority. If it returns true, the
509 /// returned couple will have the updated priority, otherwise, the
510 /// heap structural property will be restored.
511 ///
512 /// # Example
513 /// ```
514 /// # use priority_queue::DoublePriorityQueue;
515 /// let mut pq = DoublePriorityQueue::new();
516 /// pq.push("Apples", 5);
517 /// pq.push("Bananas", 10);
518 /// assert_eq!(pq.pop_max_if(|i, p| {
519 /// *p = 3;
520 /// false
521 /// }), None);
522 /// assert_eq!(pq.pop_max(), Some(("Apples", 5)));
523 /// ```
524 pub fn pop_max_if<F>(&mut self, f: F) -> Option<(I, P)>
525 where
526 F: FnOnce(&mut I, &mut P) -> bool,
527 {
528 self.find_max().and_then(|i| {
529 let r = self.store.swap_remove_if(i, f);
530 self.up_heapify(i);
531 r
532 })
533 }
534
535 /// Insert the item-priority pair into the queue.
536 ///
537 /// If an element equal to `item` is already in the queue, its priority
538 /// is updated and the old priority is returned in `Some`; otherwise,
539 /// `item` is inserted with `priority` and `None` is returned.
540 ///
541 /// # Example
542 /// ```
543 /// # use priority_queue::DoublePriorityQueue;
544 /// let mut pq = DoublePriorityQueue::new();
545 /// assert_eq!(pq.push("Apples", 5), None);
546 /// assert_eq!(pq.get_priority("Apples"), Some(&5));
547 /// assert_eq!(pq.push("Apples", 6), Some(5));
548 /// assert_eq!(pq.get_priority("Apples"), Some(&6));
549 /// assert_eq!(pq.push("Apples", 4), Some(6));
550 /// assert_eq!(pq.get_priority("Apples"), Some(&4));
551 /// ```
552 ///
553 /// Computes in **O(log(N))** time.
554 pub fn push(&mut self, item: I, priority: P) -> Option<P> {
555 use indexmap::map::Entry::*;
556 let mut pos = Position(0);
557 let mut oldp = None;
558
559 match self.store.map.entry(item) {
560 Occupied(mut e) => {
561 oldp = Some(replace(e.get_mut(), priority));
562 pos = unsafe { *self.store.qp.get_unchecked(e.index()) };
563 }
564 Vacant(e) => {
565 e.insert(priority);
566 }
567 }
568
569 if oldp.is_some() {
570 self.up_heapify(pos);
571 return oldp;
572 }
573 // get a reference to the priority
574 // copy the current size of the heap
575 let i = self.len();
576 // add the new element in the qp vector as the last in the heap
577 self.store.qp.push(Position(i));
578 self.store.heap.push(Index(i));
579 self.bubble_up(Position(i), Index(i));
580 self.store.size += 1;
581 None
582 }
583
584 /// Increase the priority of an existing item in the queue, or
585 /// insert it if not present.
586 ///
587 /// If an element equal to `item` is already in the queue with a
588 /// lower priority, its priority is increased to the new one
589 /// without replacing the element and the old priority is returned
590 /// in `Some`.
591 ///
592 /// If an element equal to `item` is already in the queue with an
593 /// equal or higher priority, its priority is not changed and the
594 /// `priority` argument is returned in `Some`.
595 ///
596 /// If no element equal to `item` is already in the queue, the new
597 /// element is inserted and `None` is returned.
598 ///
599 /// # Example
600 /// ```
601 /// # use priority_queue::DoublePriorityQueue;
602 /// let mut pq = DoublePriorityQueue::new();
603 /// assert_eq!(pq.push_increase("Apples", 5), None);
604 /// assert_eq!(pq.get_priority("Apples"), Some(&5));
605 /// assert_eq!(pq.push_increase("Apples", 6), Some(5));
606 /// assert_eq!(pq.get_priority("Apples"), Some(&6));
607 /// // Already present with higher priority, so requested (lower)
608 /// // priority is returned.
609 /// assert_eq!(pq.push_increase("Apples", 4), Some(4));
610 /// assert_eq!(pq.get_priority("Apples"), Some(&6));
611 /// ```
612 ///
613 /// Computes in **O(log(N))** time.
614 pub fn push_increase(&mut self, item: I, priority: P) -> Option<P> {
615 if self.get_priority(&item).map_or(true, |p| priority > *p) {
616 self.push(item, priority)
617 } else {
618 Some(priority)
619 }
620 }
621
622 /// Decrease the priority of an existing item in the queue, or
623 /// insert it if not present.
624 ///
625 /// If an element equal to `item` is already in the queue with a
626 /// higher priority, its priority is decreased to the new one
627 /// without replacing the element and the old priority is returned
628 /// in `Some`.
629 ///
630 /// If an element equal to `item` is already in the queue with an
631 /// equal or lower priority, its priority is not changed and the
632 /// `priority` argument is returned in `Some`.
633 ///
634 /// If no element equal to `item` is already in the queue, the new
635 /// element is inserted and `None` is returned.
636 ///
637 /// # Example
638 /// ```
639 /// # use priority_queue::DoublePriorityQueue;
640 /// let mut pq = DoublePriorityQueue::new();
641 /// assert_eq!(pq.push_decrease("Apples", 5), None);
642 /// assert_eq!(pq.get_priority("Apples"), Some(&5));
643 /// assert_eq!(pq.push_decrease("Apples", 4), Some(5));
644 /// assert_eq!(pq.get_priority("Apples"), Some(&4));
645 /// // Already present with lower priority, so requested (higher)
646 /// // priority is returned.
647 /// assert_eq!(pq.push_decrease("Apples", 6), Some(6));
648 /// assert_eq!(pq.get_priority("Apples"), Some(&4));
649 /// ```
650 ///
651 /// Computes in **O(log(N))** time.
652 pub fn push_decrease(&mut self, item: I, priority: P) -> Option<P> {
653 if self.get_priority(&item).map_or(true, |p| priority < *p) {
654 self.push(item, priority)
655 } else {
656 Some(priority)
657 }
658 }
659
660 /// Change the priority of an Item returning the old value of priority,
661 /// or `None` if the item wasn't in the queue.
662 ///
663 /// The argument `item` is only used for lookup, and is not used to overwrite the item's data
664 /// in the priority queue.
665 ///
666 /// # Example
667 /// ```
668 /// # use priority_queue::DoublePriorityQueue;
669 /// let mut pq = DoublePriorityQueue::new();
670 /// assert_eq!(pq.change_priority("Apples", 5), None);
671 /// assert_eq!(pq.get_priority("Apples"), None);
672 /// assert_eq!(pq.push("Apples", 6), None);
673 /// assert_eq!(pq.get_priority("Apples"), Some(&6));
674 /// assert_eq!(pq.change_priority("Apples", 4), Some(6));
675 /// assert_eq!(pq.get_priority("Apples"), Some(&4));
676 /// ```
677 ///
678 /// The item is found in **O(1)** thanks to the hash table.
679 /// The operation is performed in **O(log(N))** time.
680 pub fn change_priority<Q>(&mut self, item: &Q, new_priority: P) -> Option<P>
681 where
682 I: Borrow<Q>,
683 Q: Eq + Hash + ?Sized,
684 {
685 self.store
686 .change_priority(item, new_priority)
687 .map(|(r, pos)| {
688 self.up_heapify(pos);
689 r
690 })
691 }
692
693 /// Change the priority of an Item using the provided function.
694 /// Return a boolean value where `true` means the item was in the queue and update was successful
695 ///
696 /// The argument `item` is only used for lookup, and is not used to overwrite the item's data
697 /// in the priority queue.
698 ///
699 /// The item is found in **O(1)** thanks to the hash table.
700 /// The operation is performed in **O(log(N))** time (worst case).
701 pub fn change_priority_by<Q, F>(&mut self, item: &Q, priority_setter: F) -> bool
702 where
703 I: Borrow<Q>,
704 Q: Eq + Hash + ?Sized,
705 F: FnOnce(&mut P),
706 {
707 self.store
708 .change_priority_by(item, priority_setter)
709 .map(|pos| {
710 self.up_heapify(pos);
711 })
712 .is_some()
713 }
714
715 /// Get the priority of an item, or `None`, if the item is not in the queue
716 pub fn get_priority<Q>(&self, item: &Q) -> Option<&P>
717 where
718 I: Borrow<Q>,
719 Q: Eq + Hash + ?Sized,
720 {
721 self.store.get_priority(item)
722 }
723
724 /// Get the couple (item, priority) of an arbitrary element, as reference
725 /// or `None` if the item is not in the queue.
726 pub fn get<Q>(&self, item: &Q) -> Option<(&I, &P)>
727 where
728 I: Borrow<Q>,
729 Q: Eq + Hash + ?Sized,
730 {
731 self.store.get(item)
732 }
733
734 /// Get the couple (item, priority) of an arbitrary element, or `None`
735 /// if the item was not in the queue.
736 ///
737 /// The item is a mutable reference, but it's a logic error to modify it
738 /// in a way that change the result of `Hash` or `Eq`.
739 ///
740 /// The priority cannot be modified with a call to this function.
741 /// To modify the priority use use [`push`](DoublePriorityQueue::push),
742 /// [`change_priority`](DoublePriorityQueue::change_priority) or
743 /// [`change_priority_by`](DoublePriorityQueue::change_priority_by).
744 pub fn get_mut<Q>(&mut self, item: &Q) -> Option<(&mut I, &P)>
745 where
746 I: Borrow<Q>,
747 Q: Eq + Hash + ?Sized,
748 {
749 self.store.get_mut(item)
750 }
751
752 /// Remove an arbitrary element from the priority queue.
753 /// Returns the (item, priority) couple or None if the item
754 /// is not found in the queue.
755 ///
756 /// The operation is performed in **O(log(N))** time (worst case).
757 pub fn remove<Q>(&mut self, item: &Q) -> Option<(I, P)>
758 where
759 I: Borrow<Q>,
760 Q: Eq + Hash + ?Sized,
761 {
762 self.store.remove(item).map(|(item, priority, pos)| {
763 if pos.0 < self.len() {
764 self.up_heapify(pos);
765 }
766
767 (item, priority)
768 })
769 }
770
771 /// Returns the items not ordered
772 pub fn into_vec(self) -> Vec<I> {
773 self.store.into_vec()
774 }
775
776 /// Drops all items from the priority queue
777 pub fn clear(&mut self) {
778 self.store.clear();
779 }
780
781 /// Move all items of the `other` queue to `self`
782 /// ignoring the items Eq to elements already in `self`
783 /// At the end, `other` will be empty.
784 ///
785 /// **Note** that at the end, the priority of the duplicated elements
786 /// inside `self` may be the one of the elements in `other`,
787 /// if `other` is longer than `self`
788 pub fn append(&mut self, other: &mut Self) {
789 self.store.append(&mut other.store);
790 self.heap_build();
791 }
792}
793
794impl<I, P, H> DoublePriorityQueue<I, P, H> {
795 /// Returns the index of the min element
796 fn find_min(&self) -> Option<Position> {
797 match self.len() {
798 0 => None,
799 _ => Some(Position(0)),
800 }
801 }
802}
803
804impl<I, P, H> DoublePriorityQueue<I, P, H>
805where
806 P: Ord,
807{
808 /**************************************************************************/
809 /* internal functions */
810
811 fn heapify(&mut self, i: Position) {
812 if self.len() <= 1 {
813 return;
814 }
815 if level(i) % 2 == 0 {
816 self.heapify_min(i)
817 } else {
818 self.heapify_max(i)
819 }
820 }
821
822 fn heapify_min(&mut self, mut i: Position) {
823 while i <= parent(Position(self.len() - 1)) {
824 let m = i;
825
826 let l = left(i);
827 let r = right(i);
828 // Minimum of childs and grandchilds
829 i = *[l, r, left(l), right(l), left(r), right(r)]
830 .iter()
831 .map_while(|i| self.store.heap.get(i.0).map(|index| (i, index)))
832 .min_by_key(|(_, index)| {
833 self.store
834 .map
835 .get_index(index.0)
836 .map(|(_, priority)| priority)
837 .unwrap()
838 })
839 .unwrap()
840 .0;
841
842 if unsafe {
843 self.store.get_priority_from_position(i) < self.store.get_priority_from_position(m)
844 } {
845 self.store.swap(i, m);
846 if i > r {
847 // i is a grandchild of m
848 let p = parent(i);
849 if unsafe {
850 self.store.get_priority_from_position(i)
851 > self.store.get_priority_from_position(p)
852 } {
853 self.store.swap(i, p);
854 }
855 } else {
856 break;
857 }
858 } else {
859 break;
860 }
861 }
862 }
863
864 fn heapify_max(&mut self, mut i: Position) {
865 while i <= parent(Position(self.len() - 1)) {
866 let m = i;
867
868 let l = left(i);
869 let r = right(i);
870 // Minimum of childs and grandchilds
871 i = *[l, r, left(l), right(l), left(r), right(r)]
872 .iter()
873 .map_while(|i| self.store.heap.get(i.0).map(|index| (i, index)))
874 .max_by_key(|(_, index)| {
875 self.store
876 .map
877 .get_index(index.0)
878 .map(|(_, priority)| priority)
879 .unwrap()
880 })
881 .unwrap()
882 .0;
883
884 if unsafe {
885 self.store.get_priority_from_position(i) > self.store.get_priority_from_position(m)
886 } {
887 self.store.swap(i, m);
888 if i > r {
889 // i is a grandchild of m
890 let p = parent(i);
891 if unsafe {
892 self.store.get_priority_from_position(i)
893 < self.store.get_priority_from_position(p)
894 } {
895 self.store.swap(i, p);
896 }
897 } else {
898 break;
899 }
900 } else {
901 break;
902 }
903 }
904 }
905
906 fn bubble_up(&mut self, mut position: Position, map_position: Index) -> Position {
907 let priority = self.store.map.get_index(map_position.0).unwrap().1;
908 if position.0 > 0 {
909 let parent = parent(position);
910 let parent_priority = unsafe { self.store.get_priority_from_position(parent) };
911 let parent_index = unsafe { *self.store.heap.get_unchecked(parent.0) };
912 position = match (level(position) % 2 == 0, parent_priority < priority) {
913 // on a min level and greater then parent
914 (true, true) => {
915 unsafe {
916 *self.store.heap.get_unchecked_mut(position.0) = parent_index;
917 *self.store.qp.get_unchecked_mut(parent_index.0) = position;
918 }
919 self.bubble_up_max(parent, map_position)
920 }
921 // on a min level and less then parent
922 (true, false) => self.bubble_up_min(position, map_position),
923 // on a max level and greater then parent
924 (false, true) => self.bubble_up_max(position, map_position),
925 // on a max level and less then parent
926 (false, false) => {
927 unsafe {
928 *self.store.heap.get_unchecked_mut(position.0) = parent_index;
929 *self.store.qp.get_unchecked_mut(parent_index.0) = position;
930 }
931 self.bubble_up_min(parent, map_position)
932 }
933 }
934 }
935
936 unsafe {
937 // put the new element into the heap and
938 // update the qp translation table and the size
939 *self.store.heap.get_unchecked_mut(position.0) = map_position;
940 *self.store.qp.get_unchecked_mut(map_position.0) = position;
941 }
942 position
943 }
944
945 fn bubble_up_min(&mut self, mut position: Position, map_position: Index) -> Position {
946 let priority = self.store.map.get_index(map_position.0).unwrap().1;
947 let mut grand_parent = Position(0);
948 while if position.0 > 0 && parent(position).0 > 0 {
949 grand_parent = parent(parent(position));
950 (unsafe { self.store.get_priority_from_position(grand_parent) }) > priority
951 } else {
952 false
953 } {
954 unsafe {
955 let grand_parent_index = *self.store.heap.get_unchecked(grand_parent.0);
956 *self.store.heap.get_unchecked_mut(position.0) = grand_parent_index;
957 *self.store.qp.get_unchecked_mut(grand_parent_index.0) = position;
958 }
959 position = grand_parent;
960 }
961 position
962 }
963
964 fn bubble_up_max(&mut self, mut position: Position, map_position: Index) -> Position {
965 let priority = self.store.map.get_index(map_position.0).unwrap().1;
966 let mut grand_parent = Position(0);
967 while if position.0 > 0 && parent(position).0 > 0 {
968 grand_parent = parent(parent(position));
969 (unsafe { self.store.get_priority_from_position(grand_parent) }) < priority
970 } else {
971 false
972 } {
973 unsafe {
974 let grand_parent_index = *self.store.heap.get_unchecked(grand_parent.0);
975 *self.store.heap.get_unchecked_mut(position.0) = grand_parent_index;
976 *self.store.qp.get_unchecked_mut(grand_parent_index.0) = position;
977 }
978 position = grand_parent;
979 }
980 position
981 }
982
983 fn up_heapify(&mut self, i: Position) {
984 if let Some(&tmp) = self.store.heap.get(i.0) {
985 let pos = self.bubble_up(i, tmp);
986 if i != pos {
987 self.heapify(i)
988 }
989 self.heapify(pos);
990 }
991 }
992
993 /// Internal function that transform the `heap`
994 /// vector in a heap with its properties
995 ///
996 /// Computes in **O(N)**
997 pub(crate) fn heap_build(&mut self) {
998 if self.is_empty() {
999 return;
1000 }
1001 for i in (0..=parent(Position(self.len())).0).rev() {
1002 self.heapify(Position(i));
1003 }
1004 }
1005
1006 /// Returns the index of the max element
1007 fn find_max(&self) -> Option<Position> {
1008 match self.len() {
1009 0 => None,
1010 1 => Some(Position(0)),
1011 2 => Some(Position(1)),
1012 _ => Some(
1013 *[Position(1), Position(2)]
1014 .iter()
1015 .max_by_key(|i| unsafe { self.store.get_priority_from_position(**i) })
1016 .unwrap(),
1017 ),
1018 }
1019 }
1020}
1021
1022//FIXME: fails when the vector contains repeated items
1023// FIXED: repeated items ignored
1024impl<I, P, H> From<Vec<(I, P)>> for DoublePriorityQueue<I, P, H>
1025where
1026 I: Hash + Eq,
1027 P: Ord,
1028 H: BuildHasher + Default,
1029{
1030 fn from(vec: Vec<(I, P)>) -> Self {
1031 let store = Store::from(vec);
1032 let mut pq = DoublePriorityQueue { store };
1033 pq.heap_build();
1034 pq
1035 }
1036}
1037
1038use crate::PriorityQueue;
1039
1040impl<I, P, H> From<PriorityQueue<I, P, H>> for DoublePriorityQueue<I, P, H>
1041where
1042 I: Hash + Eq,
1043 P: Ord,
1044 H: BuildHasher,
1045{
1046 fn from(pq: PriorityQueue<I, P, H>) -> Self {
1047 let store = pq.store;
1048 let mut this = Self { store };
1049 this.heap_build();
1050 this
1051 }
1052}
1053
1054//FIXME: fails when the iterator contains repeated items
1055// FIXED: the item inside the pq is updated
1056// so there are two functions with different behaviours.
1057impl<I, P, H> FromIterator<(I, P)> for DoublePriorityQueue<I, P, H>
1058where
1059 I: Hash + Eq,
1060 P: Ord,
1061 H: BuildHasher + Default,
1062{
1063 fn from_iter<IT>(iter: IT) -> Self
1064 where
1065 IT: IntoIterator<Item = (I, P)>,
1066 {
1067 let store = Store::from_iter(iter);
1068 let mut pq = DoublePriorityQueue { store };
1069 pq.heap_build();
1070 pq
1071 }
1072}
1073
1074impl<I, P, H> IntoIterator for DoublePriorityQueue<I, P, H>
1075where
1076 I: Hash + Eq,
1077 P: Ord,
1078 H: BuildHasher,
1079{
1080 type Item = (I, P);
1081 type IntoIter = IntoIter<I, P>;
1082 fn into_iter(self) -> IntoIter<I, P> {
1083 self.store.into_iter()
1084 }
1085}
1086
1087impl<'a, I, P, H> IntoIterator for &'a DoublePriorityQueue<I, P, H>
1088where
1089 I: Hash + Eq,
1090 P: Ord,
1091 H: BuildHasher,
1092{
1093 type Item = (&'a I, &'a P);
1094 type IntoIter = Iter<'a, I, P>;
1095 fn into_iter(self) -> Iter<'a, I, P> {
1096 self.store.iter()
1097 }
1098}
1099
1100impl<'a, I, P, H> IntoIterator for &'a mut DoublePriorityQueue<I, P, H>
1101where
1102 I: Hash + Eq,
1103 P: Ord,
1104 H: BuildHasher,
1105{
1106 type Item = (&'a mut I, &'a mut P);
1107 type IntoIter = IterMut<'a, I, P, H>;
1108 fn into_iter(self) -> IterMut<'a, I, P, H> {
1109 IterMut::new(self)
1110 }
1111}
1112
1113impl<I, P, H> Extend<(I, P)> for DoublePriorityQueue<I, P, H>
1114where
1115 I: Hash + Eq,
1116 P: Ord,
1117 H: BuildHasher,
1118{
1119 fn extend<T: IntoIterator<Item = (I, P)>>(&mut self, iter: T) {
1120 let iter = iter.into_iter();
1121 let (min, max) = iter.size_hint();
1122 let rebuild = if let Some(max) = max {
1123 self.reserve(max);
1124 better_to_rebuild(self.len(), max)
1125 } else if min != 0 {
1126 self.reserve(min);
1127 better_to_rebuild(self.len(), min)
1128 } else {
1129 false
1130 };
1131 if rebuild {
1132 self.store.extend(iter);
1133 self.heap_build();
1134 } else {
1135 for (item, priority) in iter {
1136 self.push(item, priority);
1137 }
1138 }
1139 }
1140}
1141
1142use std::fmt;
1143
1144impl<I, P, H> fmt::Debug for DoublePriorityQueue<I, P, H>
1145where
1146 I: Hash + Eq + fmt::Debug,
1147 P: Ord + fmt::Debug,
1148{
1149 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
1150 self.store.fmt(f)
1151 }
1152}
1153
1154use std::cmp::PartialEq;
1155
1156impl<I, P1, H1, P2, H2> PartialEq<DoublePriorityQueue<I, P2, H2>> for DoublePriorityQueue<I, P1, H1>
1157where
1158 I: Hash + Eq,
1159 P1: Ord,
1160 P1: PartialEq<P2>,
1161 Option<P1>: PartialEq<Option<P2>>,
1162 P2: Ord,
1163 H1: BuildHasher,
1164 H2: BuildHasher,
1165{
1166 fn eq(&self, other: &DoublePriorityQueue<I, P2, H2>) -> bool {
1167 self.store == other.store
1168 }
1169}
1170
1171/// Compute the index of the left child of an item from its index
1172#[inline(always)]
1173const fn left(i: Position) -> Position {
1174 Position((i.0 * 2) + 1)
1175}
1176/// Compute the index of the right child of an item from its index
1177#[inline(always)]
1178const fn right(i: Position) -> Position {
1179 Position((i.0 * 2) + 2)
1180}
1181/// Compute the index of the parent element in the heap from its index
1182#[inline(always)]
1183const fn parent(i: Position) -> Position {
1184 Position((i.0 - 1) / 2)
1185}
1186
1187// Compute the level of a node from its index
1188#[inline(always)]
1189const fn level(i: Position) -> usize {
1190 log2_fast(i.0 + 1)
1191}
1192
1193#[inline(always)]
1194const fn log2_fast(x: usize) -> usize {
1195 (usize::BITS - x.leading_zeros() - 1) as usize
1196}
1197
1198// `rebuild` takes O(len1 + len2) operations
1199// and about 2 * (len1 + len2) comparisons in the worst case
1200// while `extend` takes O(len2 * log_2(len1)) operations
1201// and about 1 * len2 * log_2(len1) comparisons in the worst case,
1202// assuming len1 >= len2.
1203fn better_to_rebuild(len1: usize, len2: usize) -> bool {
1204 // log(1) == 0, so the inequation always falsy
1205 // log(0) is inapplicable and produces panic
1206 if len1 <= 1 {
1207 return false;
1208 }
1209
1210 2 * (len1 + len2) < len2 * log2_fast(len1)
1211}
1212
1213#[cfg(feature = "serde")]
1214#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
1215mod serde {
1216 use std::cmp::{Eq, Ord};
1217 use std::hash::{BuildHasher, Hash};
1218
1219 use serde::de::{Deserialize, Deserializer};
1220 use serde::ser::{Serialize, Serializer};
1221
1222 use super::DoublePriorityQueue;
1223 use crate::store::Store;
1224
1225 impl<I, P, H> Serialize for DoublePriorityQueue<I, P, H>
1226 where
1227 I: Hash + Eq + Serialize,
1228 P: Ord + Serialize,
1229 H: BuildHasher,
1230 {
1231 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
1232 where
1233 S: Serializer,
1234 {
1235 self.store.serialize(serializer)
1236 }
1237 }
1238
1239 impl<'de, I, P, H> Deserialize<'de> for DoublePriorityQueue<I, P, H>
1240 where
1241 I: Hash + Eq + Deserialize<'de>,
1242 P: Ord + Deserialize<'de>,
1243 H: BuildHasher + Default,
1244 {
1245 fn deserialize<D>(deserializer: D) -> Result<DoublePriorityQueue<I, P, H>, D::Error>
1246 where
1247 D: Deserializer<'de>,
1248 {
1249 Store::deserialize(deserializer).map(|store| {
1250 let mut pq = DoublePriorityQueue { store };
1251 pq.heap_build();
1252 pq
1253 })
1254 }
1255 }
1256}