probe_rs/architecture/arm/
communication_interface.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
use crate::{
    architecture::arm::{
        ap::valid_access_ports_allowlist,
        dp::{
            Abort, Ctrl, DebugPortError, DebugPortId, DebugPortVersion, DpAccess, Select, BASEPTR0,
            BASEPTR1, DPIDR, DPIDR1,
        },
        memory::{adi_v5_memory_interface::ADIMemoryInterface, ArmMemoryInterface, Component},
        sequences::{ArmDebugSequence, DefaultArmSequence},
        ArmError, DapAccess, DpAddress, FullyQualifiedApAddress, PortType, RawDapAccess, SwoAccess,
        SwoConfig,
    },
    probe::{DebugProbe, DebugProbeError, Probe},
    CoreStatus, Error,
};
use jep106::JEP106Code;

use std::{
    collections::{hash_map, BTreeSet, HashMap},
    fmt::Debug,
    sync::Arc,
    time::Duration,
};

/// An error in the communication with an access port or
/// debug port.
#[derive(Debug, thiserror::Error, Clone, PartialEq, Eq, Copy)]
pub enum DapError {
    /// An error occurred during SWD communication.
    #[error("An error occurred in the SWD communication between probe and device.")]
    SwdProtocol,
    /// The target device did not respond to the request.
    #[error("Target device did not respond to request.")]
    NoAcknowledge,
    /// The target device responded with a FAULT response to the request.
    #[error("Target device responded with a FAULT response to the request.")]
    FaultResponse,
    /// Target device responded with a WAIT response to the request.
    #[error("Target device responded with a WAIT response to the request.")]
    WaitResponse,
    /// The parity bit on the read request was incorrect.
    #[error("Incorrect parity on READ request.")]
    IncorrectParity,
}

/// A trait to be implemented on register types for typed device access.
pub trait Register:
    Clone + TryFrom<u32, Error = RegisterParseError> + Into<u32> + Sized + Debug
{
    /// The address of the register (in bytes).
    const ADDRESS: u8;
    /// The name of the register as string.
    const NAME: &'static str;
}

#[derive(Debug, thiserror::Error)]
#[error("Failed to parse register {name} from {value:#010x}")]
pub struct RegisterParseError {
    name: &'static str,
    value: u32,
}

impl RegisterParseError {
    pub fn new(name: &'static str, value: u32) -> Self {
        RegisterParseError { name, value }
    }
}

/// To be implemented by debug probe drivers that support debugging ARM cores.
pub trait ArmProbeInterface: DapAccess + SwdSequence + SwoAccess + Send {
    /// Returns a vector of all the access ports the current debug port has.
    ///
    /// If the target device has multiple debug ports, this will switch the active debug port
    /// if necessary.
    fn access_ports(
        &mut self,
        dp: DpAddress,
    ) -> Result<BTreeSet<FullyQualifiedApAddress>, ArmError>;

    /// Closes the interface and returns back the generic probe it consumed.
    fn close(self: Box<Self>) -> Probe;

    /// Return the currently connected debug port.
    fn current_debug_port(&self) -> DpAddress;

    /// Returns a memory interface to access the target's memory.
    fn memory_interface(
        &mut self,
        access_port: &FullyQualifiedApAddress,
    ) -> Result<Box<dyn ArmMemoryInterface + '_>, ArmError>;

    /// Reads the chip info from the romtable of given debug port.
    fn read_chip_info_from_rom_table(
        &mut self,
        dp: DpAddress,
    ) -> Result<Option<ArmChipInfo>, ArmError>;
}

// TODO: Rename trait!
pub trait SwdSequence {
    /// Corresponds to the DAP_SWJ_Sequence function from the ARM Debug sequences
    fn swj_sequence(&mut self, bit_len: u8, bits: u64) -> Result<(), DebugProbeError>;

    /// Corresponds to the DAP_SWJ_Pins function from the ARM Debug sequences
    fn swj_pins(
        &mut self,
        pin_out: u32,
        pin_select: u32,
        pin_wait: u32,
    ) -> Result<u32, DebugProbeError>;
}

pub trait UninitializedArmProbe: SwdSequence + Debug {
    fn initialize(
        self: Box<Self>,
        sequence: Arc<dyn ArmDebugSequence>,
        dp: DpAddress,
    ) -> Result<Box<dyn ArmProbeInterface>, (Box<dyn UninitializedArmProbe>, Error)>;

    fn initialize_unspecified(
        self: Box<Self>,
        dp: DpAddress,
    ) -> Result<Box<dyn ArmProbeInterface>, (Box<dyn UninitializedArmProbe>, Error)> {
        self.initialize(DefaultArmSequence::create(), dp)
    }

    /// Closes the interface and returns back the generic probe it consumed.
    fn close(self: Box<Self>) -> Probe;
}

pub trait ArmDebugState {
    fn disconnect(&mut self, _probe: &mut dyn DapProbe) {}
}

#[derive(Debug)]
pub struct Uninitialized {
    /// Specify if overrun detect should be enabled when the probe is initialized.
    pub(crate) use_overrun_detect: bool,
}

pub struct Initialized {
    /// Currently selected debug port. For targets without multidrop,
    /// this will always be the single, default debug port in the system.
    pub(crate) current_dp: DpAddress,
    dps: HashMap<DpAddress, DpState>,
    use_overrun_detect: bool,
    sequence: Arc<dyn ArmDebugSequence>,
}

impl Initialized {
    pub fn new(
        sequence: Arc<dyn ArmDebugSequence>,
        current_dp: DpAddress,
        use_overrun_detect: bool,
    ) -> Self {
        Self {
            current_dp,
            dps: HashMap::new(),
            use_overrun_detect,
            sequence,
        }
    }
}

impl ArmDebugState for Uninitialized {}

impl ArmDebugState for Initialized {
    fn disconnect(&mut self, probe: &mut dyn DapProbe) {
        let stop_span = tracing::debug_span!("debug_port_stop").entered();

        // Stop the current DP, which may not be one of the known ones (i.e. RP2040 rescue DP).
        self.sequence.debug_port_stop(probe, self.current_dp).ok();

        // Stop all intentionally-connected DPs.
        for dp in self.dps.keys() {
            // Try to select the debug port we want to shut down.
            if self.sequence.debug_port_connect(probe, *dp).is_ok() {
                self.sequence.debug_port_stop(probe, *dp).ok();
            } else {
                tracing::warn!("Failed to stop DP {:x?}", dp);
            }
        }
        probe.raw_flush().ok();
        drop(stop_span);
    }
}

#[derive(Debug)]
pub(crate) struct DpState {
    pub _debug_port_version: DebugPortVersion,

    pub current_dpbanksel: u8,

    pub current_apsel: u8,
    pub current_apbanksel: u8,

    /// Information about the APs of the target.
    /// APs are identified by a number, starting from zero.
    pub access_ports: BTreeSet<FullyQualifiedApAddress>,
}

impl DpState {
    pub fn new() -> Self {
        Self {
            _debug_port_version: DebugPortVersion::Unsupported(0xFF),
            current_dpbanksel: 0,
            current_apsel: 0,
            current_apbanksel: 0,
            access_ports: BTreeSet::new(),
        }
    }
}

/// An implementation of the communication protocol between probe and target.
/// Can be used to perform all sorts of generic debug access on ARM targets with probes that support low level access.
/// (E.g. CMSIS-DAP and J-Link support this, ST-Link does not)
#[derive(Debug)]
pub struct ArmCommunicationInterface<S: ArmDebugState> {
    probe: Option<Box<dyn DapProbe>>,
    state: S,
}

impl<S: ArmDebugState> Drop for ArmCommunicationInterface<S> {
    fn drop(&mut self) {
        if let Some(mut probe) = self.probe.take() {
            self.state.disconnect(&mut *probe);
        }
    }
}

impl<S: ArmDebugState> ArmCommunicationInterface<S> {
    fn probe_mut(&mut self) -> &mut dyn DapProbe {
        // Unwrap: Probe is only taken when the struct is dropped
        self.probe.as_deref_mut().expect("ArmCommunicationInterface is in an inconsistent state. This is a bug, please report it.")
    }

    fn close(mut self) -> Probe {
        let mut probe = self.probe.take().expect("ArmCommunicationInterface is in an inconsistent state. This is a bug, please report it.");

        self.state.disconnect(&mut *probe);

        Probe::from_attached_probe(RawDapAccess::into_probe(probe))
    }
}

/// Helper trait for probes which offer access to ARM DAP (Debug Access Port).
///
/// This is used to combine the traits, because it cannot be done in the ArmCommunicationInterface
/// struct itself.
pub trait DapProbe: RawDapAccess + DebugProbe {}

impl ArmProbeInterface for ArmCommunicationInterface<Initialized> {
    fn memory_interface(
        &mut self,
        access_port_address: &FullyQualifiedApAddress,
    ) -> Result<Box<dyn ArmMemoryInterface + '_>, ArmError> {
        ArmCommunicationInterface::memory_interface(self, access_port_address)
    }

    fn read_chip_info_from_rom_table(
        &mut self,
        dp: DpAddress,
    ) -> Result<Option<ArmChipInfo>, ArmError> {
        ArmCommunicationInterface::read_chip_info_from_rom_table(self, dp)
    }

    fn current_debug_port(&self) -> DpAddress {
        self.state.current_dp
    }

    fn close(self: Box<Self>) -> Probe {
        ArmCommunicationInterface::close(*self)
    }

    fn access_ports(
        &mut self,
        dp: DpAddress,
    ) -> Result<BTreeSet<FullyQualifiedApAddress>, ArmError> {
        self.select_dp(dp).map(|state| state.access_ports.clone())
    }
}

impl<S: ArmDebugState> SwdSequence for ArmCommunicationInterface<S> {
    fn swj_sequence(&mut self, bit_len: u8, bits: u64) -> Result<(), DebugProbeError> {
        self.probe_mut().swj_sequence(bit_len, bits)?;

        Ok(())
    }

    fn swj_pins(
        &mut self,
        pin_out: u32,
        pin_select: u32,
        pin_wait: u32,
    ) -> Result<u32, DebugProbeError> {
        self.probe_mut().swj_pins(pin_out, pin_select, pin_wait)
    }
}

impl ArmCommunicationInterface<Uninitialized> {
    pub(crate) fn new(probe: Box<dyn DapProbe>, use_overrun_detect: bool) -> Self {
        let state = Uninitialized { use_overrun_detect };

        Self {
            probe: Some(probe),
            state,
        }
    }
}

impl UninitializedArmProbe for ArmCommunicationInterface<Uninitialized> {
    fn initialize(
        mut self: Box<Self>,
        sequence: Arc<dyn ArmDebugSequence>,
        dp: DpAddress,
    ) -> Result<Box<dyn ArmProbeInterface>, (Box<dyn UninitializedArmProbe>, Error)> {
        let use_overrun_detect = self.state.use_overrun_detect;
        let probe = self.probe.take().expect("ArmCommunicationInterface is in an inconsistent state. This is a bug, please report it.");

        match ArmCommunicationInterface::<Initialized>::try_setup(
            probe,
            sequence,
            dp,
            use_overrun_detect,
        ) {
            Ok(initialized) => Ok(Box::new(initialized)),
            Err((probe, err)) => Err((
                Box::new(ArmCommunicationInterface::new(probe, use_overrun_detect)),
                Error::Arm(err),
            )),
        }
    }

    fn close(self: Box<Self>) -> Probe {
        ArmCommunicationInterface::close(*self)
    }
}

impl<'interface> ArmCommunicationInterface<Initialized> {
    /// Set up and start the debug port with brand-new state.
    fn try_setup(
        mut probe: Box<dyn DapProbe>,
        sequence: Arc<dyn ArmDebugSequence>,
        dp: DpAddress,
        use_overrun_detect: bool,
    ) -> Result<Self, (Box<dyn DapProbe>, ArmError)> {
        if let Err(err) = tracing::debug_span!("debug_port_setup")
            .in_scope(|| sequence.debug_port_setup(&mut *probe, dp))
        {
            return Err((probe, err));
        }

        let mut initializing = Self {
            probe: Some(probe),
            state: Initialized::new(sequence, dp, use_overrun_detect),
        };

        if let Err(err) = initializing.select_dp(dp) {
            return Err((initializing.probe.take().unwrap(), err));
        }

        Ok(initializing)
    }

    /// Reinitialize the communication interface (in place).
    ///
    /// Some chip-specific reset sequences may disable the debug port. `reinitialize` allows
    /// a debug sequence to re-initialize the debug port, staying true to the `Initialized`
    /// type state.
    ///
    /// If you're invoking this from a debug sequence, know that `reinitialize` will call back
    /// onto you! Specifically, it will invoke some sequence of `debug_port_*` sequences with
    /// varying internal state. If you're not prepared for this, you might recurse.
    ///
    /// `reinitialize` does handle `debug_core_start` to re-initialize any core's debugging.
    /// If you're a chip-specific debug sequence, you're expected to handle this yourself.
    pub(crate) fn reinitialize(&mut self) -> Result<(), ArmError> {
        // Simulate the drop / close of the initialized communication interface.
        let mut probe = self.probe.take().expect("ArmCommunicationInterface is in an inconsistent state. This is a bug, please report it.");
        self.state.disconnect(&mut *probe);

        match Self::try_setup(
            probe,
            self.state.sequence.clone(),
            self.current_debug_port(),
            self.state.use_overrun_detect,
        ) {
            Ok(reinitialized) => {
                let _ = std::mem::replace(self, reinitialized);
                // Dropping the original self. Since we've taken the probe, we've ensured
                // that the drop effects don't happen again.
                Ok(())
            }
            Err((probe, err)) => {
                self.probe.replace(probe);
                Err(err)
            }
        }
    }

    /// Inform the probe of the [`CoreStatus`] of the chip attached to the probe.
    pub fn core_status_notification(&mut self, state: CoreStatus) {
        self.probe_mut().core_status_notification(state).ok();
    }

    /// Tries to obtain a memory interface which can be used to read memory from ARM targets.
    pub fn memory_interface(
        &'interface mut self,
        access_port_address: &FullyQualifiedApAddress,
    ) -> Result<Box<dyn ArmMemoryInterface + 'interface>, ArmError> {
        if !self
            .select_dp(access_port_address.dp())?
            .access_ports
            .contains(access_port_address)
        {
            return Err(ArmError::ApDoesNotExist(access_port_address.clone()));
        }

        let memory_interface = ADIMemoryInterface::new(self, access_port_address)?;
        Ok(Box::new(memory_interface))
    }

    fn select_dp(&mut self, dp: DpAddress) -> Result<&mut DpState, ArmError> {
        let mut switched_dp = false;

        let sequence = self.state.sequence.clone();

        if self.state.current_dp != dp {
            tracing::debug!("Selecting DP {:x?}", dp);

            switched_dp = true;

            self.probe_mut().raw_flush()?;

            // Try to switch to the new DP.
            if let Err(e) = sequence.debug_port_connect(&mut *self.probe_mut(), dp) {
                tracing::warn!("Failed to switch to DP {:x?}: {}", dp, e);

                // Try the more involved debug_port_setup sequence, which also handles dormant mode.
                sequence.debug_port_setup(&mut *self.probe_mut(), dp)?;
            }

            self.state.current_dp = dp;
        }

        // If we don't have  a state for this DP, this means that we haven't run the necessary init sequence yet.
        if let hash_map::Entry::Vacant(entry) = self.state.dps.entry(dp) {
            let sequence = self.state.sequence.clone();

            entry.insert(DpState::new());

            let start_span = tracing::debug_span!("debug_port_start").entered();
            sequence.debug_port_start(self, dp)?;
            drop(start_span);

            // Make sure we enable the overrun detect mode when requested.
            // For "bit-banging" probes, such as JLink or FTDI, we rely on it for good, stable communication.
            // This is required as the default sequence (and most special implementations) does not do this.
            let mut ctrl_reg: Ctrl = self.read_dp_register(dp)?;
            if ctrl_reg.orun_detect() != self.state.use_overrun_detect {
                tracing::debug!("Setting orun_detect: {}", self.state.use_overrun_detect);
                // only write if there’s a need for it.
                ctrl_reg.set_orun_detect(self.state.use_overrun_detect);
                self.write_dp_register(dp, ctrl_reg)?;
            }

            let idr: DebugPortId = self.read_dp_register::<DPIDR>(dp)?.into();
            if idr.version == DebugPortVersion::DPv3 {
                let idr1: DPIDR1 = self.read_dp_register(dp)?;
                let base_ptr0: BASEPTR0 = self.read_dp_register(dp)?;
                let base_ptr1: BASEPTR1 = self.read_dp_register(dp)?;
                let base_ptr_str = base_ptr0.valid().then(|| {
                    format!(
                        "0x{:x}",
                        u64::from(base_ptr1.ptr()) | u64::from(base_ptr0.ptr() << 12)
                    )
                });
                tracing::info!(
                    "DPv3 detected: DPIDR1:{:?} BASE_PTR: {}",
                    idr1,
                    base_ptr_str.as_deref().unwrap_or("not valid")
                );

                return Err(ArmError::DebugPort(DebugPortError::Unsupported(
                    "Unsupported version (DPv3)".to_string(),
                )));
            }

            /* determine the number and type of available APs */
            tracing::trace!("Searching valid APs");

            let ap_span = tracing::debug_span!("AP discovery").entered();
            let allowed_aps = sequence.allowed_access_ports();
            let access_ports = valid_access_ports_allowlist(self, dp, allowed_aps);
            let state = self.state.dps.get_mut(&dp).unwrap();
            state.access_ports = access_ports.into_iter().collect();

            drop(ap_span);
        } else if switched_dp {
            let sequence = self.state.sequence.clone();

            let start_span = tracing::debug_span!("debug_port_start").entered();
            sequence.debug_port_start(self, dp)?;
            drop(start_span);
        }

        // note(unwrap): Entry gets inserted above
        Ok(self.state.dps.get_mut(&dp).unwrap())
    }

    fn select_dp_and_dp_bank(
        &mut self,
        dp: DpAddress,
        dp_register_address: u8,
    ) -> Result<(), ArmError> {
        let dp_state = self.select_dp(dp)?;

        // DP register addresses are 4 bank bits, 4 address bits. Lowest 2 address bits are
        // always 0, so this leaves only 4 possible addresses: 0x0, 0x4, 0x8, 0xC.
        // On ADIv5, only address 0x4 is banked, the rest are don't care.
        // On ADIv6, address 0x0 and 0x4 are banked, the rest are don't care.

        let bank = dp_register_address >> 4;
        let addr = dp_register_address & 0xF;

        if addr != 0 && addr != 4 {
            return Ok(());
        }

        if bank != dp_state.current_dpbanksel {
            dp_state.current_dpbanksel = bank;

            let mut select = Select(0);

            tracing::debug!("Changing DP_BANK_SEL to {}", dp_state.current_dpbanksel);

            select.set_ap_sel(dp_state.current_apsel);
            select.set_ap_bank_sel(dp_state.current_apbanksel);
            select.set_dp_bank_sel(dp_state.current_dpbanksel);

            self.write_dp_register(dp, select)?;
        }

        Ok(())
    }

    fn select_ap_and_ap_bank(
        &mut self,
        ap: &FullyQualifiedApAddress,
        ap_register_address: u8,
    ) -> Result<(), ArmError> {
        let dp_state = self.select_dp(ap.dp())?;

        let port = ap.ap_v1()?;
        let ap_bank = ap_register_address >> 4;

        let mut cache_changed = if dp_state.current_apsel != port {
            dp_state.current_apsel = port;
            true
        } else {
            false
        };

        if dp_state.current_apbanksel != ap_bank {
            dp_state.current_apbanksel = ap_bank;
            cache_changed = true;
        }

        if cache_changed {
            let mut select = Select(0);

            tracing::debug!(
                "Changing AP to {}, AP_BANK_SEL to {}",
                dp_state.current_apsel,
                dp_state.current_apbanksel
            );

            select.set_ap_sel(dp_state.current_apsel);
            select.set_ap_bank_sel(dp_state.current_apbanksel);
            select.set_dp_bank_sel(dp_state.current_dpbanksel);

            self.write_dp_register(ap.dp(), select)?;
        }

        Ok(())
    }
}

impl FlushableArmAccess for ArmCommunicationInterface<Initialized> {
    fn flush(&mut self) -> Result<(), ArmError> {
        self.probe_mut().raw_flush()
    }
}

impl SwoAccess for ArmCommunicationInterface<Initialized> {
    fn enable_swo(&mut self, config: &SwoConfig) -> Result<(), ArmError> {
        match self.probe_mut().get_swo_interface_mut() {
            Some(interface) => interface.enable_swo(config),
            None => Err(ArmError::ArchitectureRequired(&["ARMv7", "ARMv8"])),
        }
    }

    fn disable_swo(&mut self) -> Result<(), ArmError> {
        match self.probe_mut().get_swo_interface_mut() {
            Some(interface) => interface.disable_swo(),
            None => Err(ArmError::ArchitectureRequired(&["ARMv7", "ARMv8"])),
        }
    }

    fn read_swo_timeout(&mut self, timeout: Duration) -> Result<Vec<u8>, ArmError> {
        match self.probe_mut().get_swo_interface_mut() {
            Some(interface) => interface.read_swo_timeout(timeout),
            None => Err(ArmError::ArchitectureRequired(&["ARMv7", "ARMv8"])),
        }
    }
}

impl DapAccess for ArmCommunicationInterface<Initialized> {
    fn read_raw_dp_register(&mut self, dp: DpAddress, address: u8) -> Result<u32, ArmError> {
        self.select_dp_and_dp_bank(dp, address)?;
        let result = self
            .probe_mut()
            .raw_read_register(PortType::DebugPort, address & 0xf)?;
        Ok(result)
    }

    fn write_raw_dp_register(
        &mut self,
        dp: DpAddress,
        address: u8,
        value: u32,
    ) -> Result<(), ArmError> {
        self.select_dp_and_dp_bank(dp, address)?;
        self.probe_mut()
            .raw_write_register(PortType::DebugPort, address, value)?;
        Ok(())
    }

    fn read_raw_ap_register(
        &mut self,
        ap: &FullyQualifiedApAddress,
        address: u8,
    ) -> Result<u32, ArmError> {
        self.select_ap_and_ap_bank(ap, address)?;

        let result = self
            .probe_mut()
            .raw_read_register(PortType::AccessPort, address & 0xf)?;

        Ok(result)
    }

    fn read_raw_ap_register_repeated(
        &mut self,
        ap: &FullyQualifiedApAddress,
        address: u8,
        values: &mut [u32],
    ) -> Result<(), ArmError> {
        self.select_ap_and_ap_bank(ap, address)?;

        self.probe_mut()
            .raw_read_block(PortType::AccessPort, address, values)?;
        Ok(())
    }

    fn write_raw_ap_register(
        &mut self,
        ap: &FullyQualifiedApAddress,
        address: u8,
        value: u32,
    ) -> Result<(), ArmError> {
        self.select_ap_and_ap_bank(ap, address)?;

        self.probe_mut()
            .raw_write_register(PortType::AccessPort, address, value)?;

        Ok(())
    }

    fn write_raw_ap_register_repeated(
        &mut self,
        ap: &FullyQualifiedApAddress,
        address: u8,
        values: &[u32],
    ) -> Result<(), ArmError> {
        self.select_ap_and_ap_bank(ap, address)?;

        self.probe_mut()
            .raw_write_block(PortType::AccessPort, address, values)?;
        Ok(())
    }
}

/// Information about the chip target we are currently attached to.
/// This can be used for discovery, tho, for now it does not work optimally,
/// as some manufacturers (e.g. ST Microelectronics) violate the spec and thus need special discovery procedures.
#[derive(Debug, Clone, Copy)]
pub struct ArmChipInfo {
    /// The JEP106 code of the manufacturer of this chip target.
    pub manufacturer: JEP106Code,
    /// The unique part number of the chip target. Unfortunately this only unique in the spec.
    /// In practice some manufacturers violate the spec and assign a part number to an entire family.
    ///
    /// Consider this not unique when working with targets!
    pub part: u16,
}

impl ArmCommunicationInterface<Initialized> {
    /// Reads the chip info from the romtable of given debug port.
    pub fn read_chip_info_from_rom_table(
        &mut self,
        dp: DpAddress,
    ) -> Result<Option<ArmChipInfo>, ArmError> {
        // Check sticky error and cleanup if necessary
        let ctrl_reg: crate::architecture::arm::dp::Ctrl = self.read_dp_register(dp)?;

        if ctrl_reg.sticky_err() {
            tracing::trace!("AP Search faulted. Cleaning up");
            let mut abort = Abort::default();
            abort.set_stkerrclr(true);
            self.write_dp_register(dp, abort)?;
        }

        let state = self.select_dp(dp)?;

        for access_port in state.access_ports.clone() {
            if let Ok(mut memory) = self.memory_interface(&access_port) {
                let base_addr = memory.base_address()?;
                let component = Component::try_parse(&mut *memory, base_addr)?;
                if let Component::Class1RomTable(component_id, _) = component {
                    if let Some(jep106) = component_id.peripheral_id().jep106() {
                        return Ok(Some(ArmChipInfo {
                            manufacturer: jep106,
                            part: component_id.peripheral_id().part(),
                        }));
                    }
                }
            }
        }
        // tracing::info!(
        //     "{}\n{}\n{}\n{}",
        //     "If you are using a Nordic chip, it might be locked to debug access".yellow(),
        //     "Run cargo flash with --nrf-recover to unlock".yellow(),
        //     "WARNING: --nrf-recover will erase the entire code".yellow(),
        //     "flash and UICR area of the device, in addition to the entire RAM".yellow()
        // );

        Ok(None)
    }
}

impl std::fmt::Display for ArmChipInfo {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let manu = match self.manufacturer.get() {
            Some(name) => name.to_string(),
            None => format!(
                "<unknown manufacturer (cc={:2x}, id={:2x})>",
                self.manufacturer.cc, self.manufacturer.id
            ),
        };
        write!(f, "{} 0x{:04x}", manu, self.part)
    }
}

/// A helper trait to get more specific interfaces.
pub trait FlushableArmAccess {
    /// Flush all remaining commands if the target driver implements batching.
    fn flush(&mut self) -> Result<(), ArmError>;
}